Matching Items (3)
Filtering by

Clear all filters

150570-Thumbnail Image.png
Description
Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field

Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field on the pairing dynamics in two-flavor color-superconducting dense quark matter is investigated. A universal form of the gap equation for an arbitrary magnetic field is derived in the weakly coupled regime of QCD at asymptotically high density, using the framework of Schwinger-Dyson equation in the improved rainbow approximation. The results for the gap in two limiting cases, weak and strong magnetic fields, are obtained and discussed. It is shown that the superconducting gap function in the weak magnetic field limit develops a directional dependence in momentum space. This property of the gap parameter is argued to be a consequence of a long-range interaction in QCD.
ContributorsYu, Lang (Author) / Shovkovy, Igor A. (Thesis advisor) / Lunardini, Cecilia (Committee member) / Schmidt, Kevin (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2012
156309-Thumbnail Image.png
Description
The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the

The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the cosmos. This work outlines an alternative method to investigating and identifying the presence of cosmic magnetic fields. This method searches for Faraday Rotation (FR) and specifically uses polarized CMB photons as back-light. I find that current generation CMB experiments may be not sensitive enough to detect FR but next generation experiments should be able to make highly significant detections. Identifying FR with the CMB will provide information on the component of magnetic fields along the line of sight of observation.

The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB.

21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively

Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum.

This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and

cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future

arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging.
ContributorsKolopanis, Matthew John (Author) / Bowman, Judd (Thesis advisor) / Mauskopf, Philip (Thesis advisor) / Lunardini, Cecilia (Committee member) / Chamberlin, Ralph (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2018
152355-Thumbnail Image.png
Description
For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012

For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 /cm2/s, above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming collapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, ∼ 1s. They could be identified by the time coincidence of N ≥2 or N ≥3 events within 1s time window from nearby (4 – 5 Mpc) failed supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel, is discussed. Results are applied to serval models of UHE neutrino sources. Suppression effects are strong for sources that extend beyond z ∼ 10. This provides a fascinating probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10 – 100. Ultimately this research will examine the detectability of DSNB, neutrino bursts from failed supernovae and absorption effects in the neutrino spectrum.
ContributorsYang, Lili, 1970- (Author) / Lunardini, Cecilia (Thesis advisor) / Alarcon, Ricardo (Committee member) / Shovkovy, Igor (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013