Matching Items (5)
Filtering by

Clear all filters

147970-Thumbnail Image.png
Description

The purpose of this study was to test the reproducibility of the current data set. It was hypothesized that older adults’ scores on the Repeatable Battery for Assessment of Neuropsychological Status (RBANS) would decrease from their initial visit to their one year follow-up visit and that greater overall age is

The purpose of this study was to test the reproducibility of the current data set. It was hypothesized that older adults’ scores on the Repeatable Battery for Assessment of Neuropsychological Status (RBANS) would decrease from their initial visit to their one year follow-up visit and that greater overall age is associated with worse performance. Overall, the older adults with a follow-up visit in this study experienced greater decline on the RBANS DMI than on the RBANS total scaled score. There seems to be a negative trend in which individuals with higher first-visit VCI scores experience greater improvement on the first trial of the motor task with the non-dominant hand. The same trend can be seen in DMI scores where higher initial DMI scores are associated with greater improvement on the first non-dominant hand trial of the motor task. This initial trend suggests that visuospatial scores have an association with long-term change in the motor task. The number of participants in this data set were limited, thus more data will be needed to increase confidence in conclusions about these relationships in the future.

ContributorsDettmer, Alaina Nicole (Author) / Schaefer, Sydney (Thesis director) / Hooyman, Andrew (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171445-Thumbnail Image.png
Description
Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally

Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally significant changes in individuals with severe post- stroke aphasia remains a key challenge for the rehabilitation community. This dissertation aimed to evaluate the efficacy of Startle Adjuvant Rehabilitation Therapy (START), a tele-enabled, low- cost treatment, to improve quality of life and speech in individuals with severe-to-moderate stroke. START is the exposure to startling acoustic stimuli during practice of motor tasks in individuals with stroke. START increases the speed and intensity of practice in severely impaired post-stroke reaching, with START eliciting muscle activity 2-3 times higher than maximum voluntary contraction. Voluntary reaching distance, onset, and final accuracy increased after a session of START, suggesting a rehabilitative effect. However, START has not been evaluated during impaired speech. The objective of this study is to determine if impaired speech can be elicited by startling acoustic stimuli, and if three days of START training can enhance clinical measures of moderate to severe post-stroke aphasia and apraxia of speech. This dissertation evaluates START in 42 individuals with post-stroke speech impairment via telehealth in a Phase 0 clinical trial. Results suggest that impaired speech can be elicited by startling acoustic stimuli and that START benefits individuals with severe-to-moderate post-stroke impairments in both linguistic and motor speech domains. This fills an important gap in aphasia care, as many speech therapies remain ineffective and financially inaccessible for patients with severe deficits. START is effective, remotely delivered, and may likely serve as an affordable adjuvant to traditional therapy for those that have poor access to quality care.
ContributorsSwann, Zoe Elisabeth (Author) / Honeycutt, Claire F (Thesis advisor) / Daliri, Ayoub (Committee member) / Rogalsky, Corianne (Committee member) / Liss, Julie (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2022
158858-Thumbnail Image.png
Description
Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not meet. Thus, there is a need to enhance the therapies.

Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not meet. Thus, there is a need to enhance the therapies. Recent studies have shown that StartReact -the involuntary release of a planned movement, triggered by a startling stimulus (e.g., loud sound)- elicits faster and larger muscle activation in iwS compared to voluntary-initiated movement. However, StartReact has been only cursorily studied to date and there are some gaps in the StartReact knowledge. Previous studies have only evaluated StartReact on single-jointed movements in iwS, ignoring more functional tasks. IwS usually have abnormal flexor activity during extension tasks and abnormal muscle synergy especially during multi-jointed tasks; therefore, it is unknown 1) if more complex multi-jointed reach movements are susceptible to StartReact, and 2) if StartReact multi-jointed movements will be enhanced in the same way as single-jointed movements in iwS. In addition, previous studies showed that individuals with severe stroke, especially those with higher spasticity, experienced higher abnormal flexor muscle activation during StartReact trials. However, there is no study evaluating the impact of this elevated abnormal flexor activity on movement, muscle activation and muscle synergy alterations during voluntary-initiated movements after exposure to StartReact.
This dissertation evaluates StartReact and the voluntary trials before and after exposure to StartReact during a point-to-point multi-jointed reach task to three different targets covering a large workspace. The results show that multi-jointed reach tasks are susceptible to StartReact in iwS and the distance, muscle and movement onset speed, and muscle activations percentages and amplitude increase during StartReact trials. In addition, the distance, accuracy, muscle and movement onsets speeds, and muscle synergy similarity indices to the norm synergies increase during the voluntary-initiated trials after exposure to StartReact. Overall, this dissertation shows that exposure to StartReact did not impair voluntary-initiated movement and muscle synergy, but even improved them. Therefore, this study suggests that StartReact is safe for more investigations in training studies and therapy.
ContributorsRahimiTouranposhti, Marziye (Author) / Honeycutt, Claire F. (Thesis advisor) / Roh, Jinsook (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2020
131230-Thumbnail Image.png
Description
Stroke is the fifth most common cause of death in America and a leading cause of long-term adult disability, affecting more than 795,000 people a year ("American Stroke Association: A Division of the American Heart Association"). Many of these individuals experience persistent difficulty with the execution of daily tasks as

Stroke is the fifth most common cause of death in America and a leading cause of long-term adult disability, affecting more than 795,000 people a year ("American Stroke Association: A Division of the American Heart Association"). Many of these individuals experience persistent difficulty with the execution of daily tasks as a direct consequence of a stroke. A key factor in the successful recovery of a stroke survivor is rehabilitation. Rehabilitation sessions can start within two days of the stroke if the patient is in stable condition, and often continues long after their release from the hospital ("American Stroke Association: A Division of the American Heart Association"). The rehabilitation sessions are driven by a team of rehabilitation care professionals which includes, but is not limited to a physical therapist, occupational therapist, and speech-language pathologist. These professionals are available to the stroke survivor as resources to assist in developing and organizing ways to achieve independence as opposed to dependence. Ultimately, a stroke survivor’s family typically provides the most important long-term support during recovery and rehabilitation ("American Stroke Association: A Division of the American Heart Association"). However, there is very little research that focuses on the impact that local family can have on the stroke survivor’s establishment and achievement of goals throughout their recovery and rehabilitation. This study examines this gap in knowledge.
ContributorsGraves, Migail (Author) / Rogalsky, Corianne (Thesis director) / Schaefer, Sydney (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131024-Thumbnail Image.png
Description
The phenomenon known as startReact is the fast, involuntary execution of a planned movement triggered by a startling acoustic stimulus. StartReact has previously been analyzed in simple motor movements such as finger abduction tasks, hand grasp tasks, and elbow extension tasks. More complex movements have also been analyzed, but there

The phenomenon known as startReact is the fast, involuntary execution of a planned movement triggered by a startling acoustic stimulus. StartReact has previously been analyzed in simple motor movements such as finger abduction tasks, hand grasp tasks, and elbow extension tasks. More complex movements have also been analyzed, but there have been limited studies that look into functional complex tasks that require end-point accuracy. The objective of this project was to assess the ability to elicit startReact in tasks that simulate activities of daily living like feeding or picking up a glass of water. We hypothesized that a startReact response would be present in complex functional tasks, but the response would not be as accurate due to the increase in speed. Five subjects performed a simulated feeding task by moving kidney beans from one target to another where the end target changed in diameter as well as, a simulated drinking task where the subject moved a cup full of beads from one target to another. The hypothesis was supported due to a significant difference between no stimulus and stimulus trials for tricep muscle onset time, duration time, and the accuracy parameters of amount of beans dropped and weight in beads dropped. The results coincided with previous studies where subjects compensated for the change in diameter by increasing reaction time as the target diameter size decreased. The data obtained contradicted a previous study in relation to the duration time between the tasks due to our smallest diameter size having a faster duration time in comparison to the other diameter sizes. This study provides preliminary data that could assist researchers and clinicians in improving physical therapy methods for patients with impaired upper extremity motor movements.
ContributorsRiggs, Cassie Rebekah (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12