Matching Items (11)
Filtering by

Clear all filters

133395-Thumbnail Image.png
Description
Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke in mouse models had shown the upregulation of a specific micro-RNA: miR-1224. We hypothesized that miR-1224 was responsible for the

Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke in mouse models had shown the upregulation of a specific micro-RNA: miR-1224. We hypothesized that miR-1224 was responsible for the regulation of the ST2 receptor protein’s expression. We performed cellular transfection on murine splenocytes with four different miRNAs—miR-1224-mimic, miR-1224-inhibitor, miR-451-mimic, and a control. We predicted that transfection with 1224m would decrease ST2 expression, while transfection with 1224i would increase ST2 expression. Two complete trials were run, and analysis of the results included RT-PCR of both miRNA samples and mRNA samples to confirm transfection and controlled transcription. Reverse transcription and qPCR of miRNA was done in order to confirm that transfection was in fact successful. Reverse transcription and qPCR of the mRNA was done in order to confirm that ST2 mRNA was not altered; this allowed us to attribute any changes in ST2 protein levels to miRNA interactions, as the mRNA levels were consistent. Western blotting was done in order to assess relative protein content. We found that transfection with 1224m slightly decreased ST2 expression and transfection with 1224i slightly increased ST2 expression, however, after assessing the p-values through statistical analyses, neither difference was significant. As such, our hypothesis was rejected as it is not evident that miR-1224 plays a significant role on ST2 gene expression. Future studies are needed in order to analyze alternate protein targets to fully assess the role of miR-1224.
ContributorsReddy, Nihaal (Author) / Holechek, Susan (Thesis director) / Ahmad, Saif (Committee member) / Wood, Kristofer (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133027-Thumbnail Image.png
Description
Background and Purpose— There is limited conclusive data on both pharmacological and holistic treatment options to improve cognition in adults after stroke. In particular, there is lacking evidence for cognitive rehabilitation in the subacute and chronic phases when cognitive impairment may be more perceptible. In this meta-analytic review, our primary

Background and Purpose— There is limited conclusive data on both pharmacological and holistic treatment options to improve cognition in adults after stroke. In particular, there is lacking evidence for cognitive rehabilitation in the subacute and chronic phases when cognitive impairment may be more perceptible. In this meta-analytic review, our primary objective was to determine the cognitive effects of aerobic exercise on post-stroke adults in the post-acute phases. Secondary objectives were to investigate the differential effects of aerobic exercise on sub-domains of cognitive function.
Methods— Data were extracted and filtered from electronic databases PubMed (MEDLINE), CINAHL, Embase, PsycINFO, and Scopus. Intervention effects were represented by Hedges’ g and combined into pooled effect sizes using random effects models. Heterogeneity was evaluated using the Chi-squared (Q) and I-squared statistics.
Results— Five studies met inclusion criteria, representing data from 182 participants. The primary analysis produced a positive overall effect of aerobic exercise on cognitive performance (Hedges’ g [95% confidence interval]= 0.42 [0.007–0.77]). Effects were significantly different from zero for aerobic interventions combined with other physical activity interventions (Hedges’ g [CI] =0.59 [0.26 to 0.92]), but not for aerobic interventions alone (P= 0.40). In specific subdomains, positive moderate effects were found for global cognitive function (Hedges’ g [CI] =0.79 [0.31 to 1.26]) but not for attention and processing speed (P=0.08), executive function (P= 0.84), and working memory (P=0.92).
Conclusions— We determined that aerobic exercise combined with other modes of training produced a significant positive effect on cognition in adults after stroke in the subacute and chronic phases. Our analysis supports the use of combined training as a treatment option to enhance long-term cognitive function in adults after stroke. Further research is needed to determine the efficacy of aerobic training alone.
ContributorsMitchell, Michaela (Author) / Holzapfel, Simon (Thesis director) / Bosch, Pamela (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

The aim of this study was to assess whether exposing individuals who are 6-month post-stroke with an upper extremity motor deficit and some form of speech impairment (aphasia and/or apraxia) to upper extremity training utilizing Startle Adjuvant Rehabilitation Therapy (START) would result in improvement in symptoms of speech impairment. It

The aim of this study was to assess whether exposing individuals who are 6-month post-stroke with an upper extremity motor deficit and some form of speech impairment (aphasia and/or apraxia) to upper extremity training utilizing Startle Adjuvant Rehabilitation Therapy (START) would result in improvement in symptoms of speech impairment. It was hypothesized that while scores on Diadochokinetic Rate (a measure of apraxia) and Repetition (a measure of aphasia) would improve by timepoint with START as compared to the Control group, measures of aphasia including Spontaneous Speech, Auditory Verbal Comprehension, and Naming would not be different in scores by timepoint. Subjects were recruited from two separate ongoing studies consisting of three days of similar upper extremity training on certain functional tasks with and without START and the speech assessments utilized were pulled from the Western Aphasia Battery (Revised) and Apraxia Battery for Adults 2nd Edition. It was found that there were no statistically significant differences by timepoint in either condition for any of the speech assessments. This proof-of-concept study is the first to assess whether the StartReact effect, when applied to the upper extremity domain, will translate into measurable improvements in speech impairment despite the lack of any speech training.

ContributorsTesman, Nathan (Author) / Honeycutt, Claire (Thesis director) / Rogalsky, Corianne (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

The article highlights the damage COVID-19 can cause by attacking brain tissue which can lead to several neurological disorders; it is a collection of systematic review and meta-analysis reviews as well as different scientific studies. The article addresses the background of COVID-19 and the distinction between Long COVID and COVID-19,

The article highlights the damage COVID-19 can cause by attacking brain tissue which can lead to several neurological disorders; it is a collection of systematic review and meta-analysis reviews as well as different scientific studies. The article addresses the background of COVID-19 and the distinction between Long COVID and COVID-19, along with the general pathway that the virus of COVID-19 takes to infect a cell at a cellular level. The variety of symptoms that individuals experience can be a topic of interest, and this article discusses the variability in COVID-19 infection. Moreover, SARS-COV-2 can enter the body in different ways and attack different types of cells within the body, thus the article brings attention to the different mechanisms of infection. Due to the brain damage that can be caused by COVID-19, there are several neurological disorders the article addresses including status epilepticus, stroke, acute necrotizing encephalopathy, encephalitis, hypogeusia, hyposmia, guillain-barre syndrome, and systemic inflammatory response syndrome. Although these disorders have different routes of treatment, the article briefly talks about general treatments for COVID-19 that include antiviral drugs, immune modulators, and monoclonal antibody treatment. Given the significance of COVID-19, more research should be done to understand the variety of neurological disorders that can be an effect of COVID-19 infection.

ContributorsMunn, Rebecca (Author) / Merkley, Ryan (Thesis director) / Melkozernov, Alexander (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
157994-Thumbnail Image.png
Description
This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established

This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.
ContributorsNevisipour, Masood (Author) / Honeycutt, Claire (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Abbas, James (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
131906-Thumbnail Image.png
Description
The maximal amount of oxygen a person’s body can use while exercising is their VO2max. It is important to test VO2max in chronic stroke survivors who experience stroke-related deficits. The American College of Sports Medicine defines criteria for determining if a VO2max was reached. These criteria appear not to be

The maximal amount of oxygen a person’s body can use while exercising is their VO2max. It is important to test VO2max in chronic stroke survivors who experience stroke-related deficits. The American College of Sports Medicine defines criteria for determining if a VO2max was reached. These criteria appear not to be applicable for this population. We explored an alternative set of criteria that appears more appropriate. Criteria for VO2max testing post-stroke should be further tested and defined.
ContributorsBauer, Rebecca Ellen (Author) / Holzapfel, Simon (Thesis director) / Bosch, Pamela (Committee member) / College of Health Solutions (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131230-Thumbnail Image.png
Description
Stroke is the fifth most common cause of death in America and a leading cause of long-term adult disability, affecting more than 795,000 people a year ("American Stroke Association: A Division of the American Heart Association"). Many of these individuals experience persistent difficulty with the execution of daily tasks as

Stroke is the fifth most common cause of death in America and a leading cause of long-term adult disability, affecting more than 795,000 people a year ("American Stroke Association: A Division of the American Heart Association"). Many of these individuals experience persistent difficulty with the execution of daily tasks as a direct consequence of a stroke. A key factor in the successful recovery of a stroke survivor is rehabilitation. Rehabilitation sessions can start within two days of the stroke if the patient is in stable condition, and often continues long after their release from the hospital ("American Stroke Association: A Division of the American Heart Association"). The rehabilitation sessions are driven by a team of rehabilitation care professionals which includes, but is not limited to a physical therapist, occupational therapist, and speech-language pathologist. These professionals are available to the stroke survivor as resources to assist in developing and organizing ways to achieve independence as opposed to dependence. Ultimately, a stroke survivor’s family typically provides the most important long-term support during recovery and rehabilitation ("American Stroke Association: A Division of the American Heart Association"). However, there is very little research that focuses on the impact that local family can have on the stroke survivor’s establishment and achievement of goals throughout their recovery and rehabilitation. This study examines this gap in knowledge.
ContributorsGraves, Migail (Author) / Rogalsky, Corianne (Thesis director) / Schaefer, Sydney (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05