Matching Items (13)
Filtering by

Clear all filters

151732-Thumbnail Image.png
Description
In order to successfully implement a neural prosthetic system, it is necessary to understand the control of limb movements and the representation of body position in the nervous system. As this development process continues, it is becoming increasingly important to understand the way multiple sensory modalities are used in limb

In order to successfully implement a neural prosthetic system, it is necessary to understand the control of limb movements and the representation of body position in the nervous system. As this development process continues, it is becoming increasingly important to understand the way multiple sensory modalities are used in limb representation. In a previous study, Shi et al. (2013) examined the multimodal basis of limb position in the superior parietal lobule (SPL) as monkeys reached to and held their arm at various target locations in a frontal plane. Visual feedback was withheld in half the trials, though non-visual (i.e. somatic) feedback was available in all trials. Previous analysis showed that some of the neurons were tuned to limb position and that some neurons had their response modulated by the presence or absence of visual feedback. This modulation manifested in decreases in firing rate variability in the vision condition as compared to nonvision. The decreases in firing rate variability, as shown through decreases in both the Fano factor of spike counts and the coefficient of variation of the inter-spike intervals, suggested that changes were taking place in both trial-by-trial and intra-trial variability. I sought to further probe the source of the change in intra-trial variability through spectral analysis. It was hypothesized that the presence of temporal structure in the vision condition would account for a regularity in firing that would have decreased intra-trial variability. While no peaks were apparent in the spectra, differences in spectral power between visual conditions were found. These differences are suggestive of unique temporal spiking patterns at the individual neuron level that may be influential at the population level.
ContributorsDyson, Keith (Author) / Buneo, Christopher A (Thesis advisor) / Helms-Tillery, Stephen I (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
152013-Thumbnail Image.png
Description
Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present

Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present study investigated the effects of arm configuration on the interaction between planning noise and execution noise. Subjects performed reaching movements to three targets located in a frontal plane. At the starting position, subjects matched one of two desired arm configuration 'templates' namely "adducted" and "abducted". These arm configurations were obtained by rotations along the shoulder-hand axis, thereby maintaining endpoint position. Visual feedback of the hand was varied from trial to trial, thereby increasing uncertainty in movement planning and execution. It was hypothesized that 1) pattern of endpoint variability would be dependent on arm configuration and 2) that these differences would be most apparent in conditions without visual feedback. It was found that there were differences in endpoint variability between arm configurations in both visual conditions, but these differences were much larger when visual feedback was withheld. The overall results suggest that patterns of endpoint variability are highly dependent on arm configuration, particularly in the absence of visual feedback. This suggests that in the presence of vision, movement planning in 3D space is performed using coordinates that are largely arm configuration independent (i.e. extrinsic coordinates). In contrast, in the absence of vision, movement planning in 3D space reflects a substantial contribution of intrinsic coordinates.
ContributorsLakshmi Narayanan, Kishor (Author) / Buneo, Christopher (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
150222-Thumbnail Image.png
Description
An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine the role of this area in estimating limb position based on visual and somatic signals (proprioceptive, efference copy). When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons were modulated by visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level. The second part of this dissertation focused on the consequences of misestimation of limb position for movement production. It is well known that limb movements are inherently variable. This variability could be the result of noise arising at one or more stages of movement production. Here we used biomechanical modeling and simulation techniques to characterize movement variability resulting from noise in estimating limb position ('sensing noise') and in planning required movement vectors ('planning noise'), and compared that to the variability expected due to noise in movement execution. We found that the effects of sensing and planning related noise on movement variability were dependent upon both the planned movement direction and the initial configuration of the arm and were different in many respects from the effects of execution noise.
ContributorsShi, Ying (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / He, Jiping (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2011
156093-Thumbnail Image.png
Description
Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of visual-proprioceptive integration during an arm-position maintenance task. Neural recordings

Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of visual-proprioceptive integration during an arm-position maintenance task. Neural recordings were obtained from two different cortical areas as non-human primates performed a center-out reaching task in a virtual reality environment. Following a reach, animals maintained the end-point position of their arm under unimodal (proprioception only) and bimodal (proprioception and vision) conditions. In both areas, time domain and multi-taper spectral analysis methods were used to quantify changes in the spiking, local field potential (LFP), and spike-field coherence during arm-position maintenance.

In both areas, individual neurons were classified based on the spectrum of their spiking patterns. A large proportion of cells in the SPL that exhibited sensory condition-specific oscillatory spiking in the beta (13-30Hz) frequency band. Cells in the IPL typically had a more diverse mix of oscillatory and refractory spiking patterns during the task in response to changing sensory condition. Contrary to the assumptions made in many modelling studies, none of the cells exhibited Poisson-spiking statistics in SPL or IPL.

Evoked LFPs in both areas exhibited greater effects of target location than visual condition, though the evoked responses in the preferred reach direction were generally suppressed in the bimodal condition relative to the unimodal condition. Significant effects of target location on evoked responses were observed during the movement period of the task well.

In the frequency domain, LFP power in both cortical areas was enhanced in the beta band during the position estimation epoch of the task, indicating that LFP beta oscillations may be important for maintaining the ongoing state. This was particularly evident at the population level, with clear increase in alpha and beta power. Differences in spectral power between conditions also became apparent at the population level, with power during bimodal trials being suppressed relative to unimodal. The spike-field coherence showed confounding results in both the SPL and IPL, with no clear correlation between incidence of beta oscillations and significant beta coherence.
ContributorsVanGilder, Paul (Author) / Buneo, Christopher A (Thesis advisor) / Helms-Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Muthuswamy, Jit (Committee member) / Foldes, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

The aim of this study was to assess whether exposing individuals who are 6-month post-stroke with an upper extremity motor deficit and some form of speech impairment (aphasia and/or apraxia) to upper extremity training utilizing Startle Adjuvant Rehabilitation Therapy (START) would result in improvement in symptoms of speech impairment. It

The aim of this study was to assess whether exposing individuals who are 6-month post-stroke with an upper extremity motor deficit and some form of speech impairment (aphasia and/or apraxia) to upper extremity training utilizing Startle Adjuvant Rehabilitation Therapy (START) would result in improvement in symptoms of speech impairment. It was hypothesized that while scores on Diadochokinetic Rate (a measure of apraxia) and Repetition (a measure of aphasia) would improve by timepoint with START as compared to the Control group, measures of aphasia including Spontaneous Speech, Auditory Verbal Comprehension, and Naming would not be different in scores by timepoint. Subjects were recruited from two separate ongoing studies consisting of three days of similar upper extremity training on certain functional tasks with and without START and the speech assessments utilized were pulled from the Western Aphasia Battery (Revised) and Apraxia Battery for Adults 2nd Edition. It was found that there were no statistically significant differences by timepoint in either condition for any of the speech assessments. This proof-of-concept study is the first to assess whether the StartReact effect, when applied to the upper extremity domain, will translate into measurable improvements in speech impairment despite the lack of any speech training.

ContributorsTesman, Nathan (Author) / Honeycutt, Claire (Thesis director) / Rogalsky, Corianne (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
156204-Thumbnail Image.png
Description
The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness and devices that are bulky, costly, and have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This research project presents a portable cost-effective soft robotic haptic device with a broad stiffness range that is adjustable and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator as well as the structure of the haptic interface. It is made with interchangeable soft elastomeric sleeves that can be customized to include materials of varying stiffness to increase or decrease the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance with the stiffness the user specifies. A preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. Results indicate that the region of controllable stiffness was in the center of the device, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. Finally, a qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.
ContributorsSebastian, Frederick (Author) / Polygerinos, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Fu, Qiushi (Committee member) / Arizona State University (Publisher)
Created2018
157994-Thumbnail Image.png
Description
This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established

This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.
ContributorsNevisipour, Masood (Author) / Honeycutt, Claire (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Abbas, James (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019