Matching Items (2)
Filtering by

Clear all filters

150385-Thumbnail Image.png
Description
In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared

In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared hypocycloid mechanism allows for linear motion of the connecting rod and provides a method for perfect balance with any number of cylinders including single cylinder applications. A variety of hypocycloid engine designs and research efforts have been undertaken and produced successful running prototypes. Wiseman Technologies, Inc provided one of these prototypes to this research effort. This two-cycle 30cc half crank hypocycloid engine has shown promise in several performance categories including balance and efficiency. To further investigate its potential a more thorough and scientific analysis was necessary and completed in this research effort. The major objective of the research effort was to critically evaluate and optimize the Wiseman prototype for maximum performance in balance, efficiency, and power output. A nearly identical slider crank engine was used extensively to establish baseline performance data and make comparisons. Specialized equipment and methods were designed and built to collect experimental data on both engines. Simulation and mathematical models validated by experimental data collection were used to better quantify performance improvements. Modifications to the Wiseman prototype engine improved balance by 20 to 50% (depending on direction) and increased peak power output by 24%.
ContributorsConner, Thomas (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2011
135049-Thumbnail Image.png
Description
Variability is inherent in human movement, and poses a challenge to researchers attempting to measure balance. Human movement variability was analyzed using two methods: standard deviation and largest Lyapunov exponent. The experiment was a sit-to-stand task with physical and cognitive perturbations. The physical perturbation consisted of stable and unstable platform

Variability is inherent in human movement, and poses a challenge to researchers attempting to measure balance. Human movement variability was analyzed using two methods: standard deviation and largest Lyapunov exponent. The experiment was a sit-to-stand task with physical and cognitive perturbations. The physical perturbation consisted of stable and unstable platform conditions, while the cognitive perturbation consisted of a counting task. The data were collected from 24 healthy young adults. The purpose of this study was to compare the standard deviation and largest Lyapunov exponent as measures of stability, and to determine the Lyapunov exponent's sensitivity to cognitive perturbation. Evidence suggests that the Lyapunov exponent serves as a more accurate indicator of stability than standard deviation, and that it lacks sensitivity to the counting task.
ContributorsJohnson, Jennifer Jeanne (Author) / Amazeen, Polemnia (Thesis director) / Amazeen, Eric (Committee member) / Stone, Gregory (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12