Matching Items (2)
Filtering by

Clear all filters

158299-Thumbnail Image.png
Description
Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant

Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant (WWTP). A key issue for the study was the “souring” of the anaerobic digesters (ADs), which means that the microorganism responsible for organic degradation were deactivated, causing failure of the AD. Several bench-scale reactors soured after the introduction of the FW/FOG feed streams. By comparing measurements from stable with measurements from the souring reactors, I identified two different circumstances responsible for souring events. One set of reactors soured rapidly after the introduction of FW/FOG due to the digester’s hydraulic retention times (HRT) becoming too short for stable operation. A second set of reactors soured after a long period of stability due to steady accumulation of fatty acids (FAs) that depleted bicarbonate alkalinity. FA accumulation was caused by the incomplete hydrolysis/fermentation of feedstock protein, leading to insufficient release of ammonium (NH4+). In contrast, carbohydrates were more rapidly hydrolyzed and fermented to FAs.

The most important contribution of my research is that I identified several leading indicators of souring. In all cases of souring, the accumulation of soluble chemical oxygen demand (SCOD) was an early and easily quantified indicator. A shift in effluent FA concentrations from shorter to longer species also portended souring. A reduction in the yield of methane (CH4) per mass of volatile suspended solids removed (VSSR) also identified souring conditions, but its variability prevented the methane yield from providing advanced warning to allow intervention. For the rapidly soured reactors, reduced bicarbonate alkalinity was the most useful warning sign, and an increasing ratio of SCOD to bicarbonate alkalinity was the clearest sign of souring. Because I buffered the slow-souring reactors with calcium carbonate (CaCO3), I could not rely on bicarbonate alkalinity as an indicator, which put a premium on SCOD as the early warning. I implemented two buffering regimes and demonstrated that early and consistent buffering could lead to reactor recovery.
ContributorsKupferer III, Rick Anthony (Author) / Rittmann, Bruce E. (Thesis advisor) / Young, Michelle N (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2020
158340-Thumbnail Image.png
Description
Eighty-two percent of the United States population reside in urban areas. The centralized treatment of the municipal wastewater produced by this population is a huge energy expenditure, up to three percent of the entire energy budget of the country. A portion of this energy is able to be recovered

Eighty-two percent of the United States population reside in urban areas. The centralized treatment of the municipal wastewater produced by this population is a huge energy expenditure, up to three percent of the entire energy budget of the country. A portion of this energy is able to be recovered through the process of anaerobic sludge digestion. Typically, this technology converts the solids separated and generated during the wastewater treatment process into methane, a combustible gas that may be burned to generate electricity. Designing and optimizing anaerobic digestion systems requires the measurement of degradation rates for waste-specific kinetic parameters. In this work, I discuss the ways these kinetic parameters are typically measured. I recommend and demonstrate improvements to these commonly used measuring techniques. I provide experimental results of batch kinetic experiments exploring the effect of sludge pretreatment, a process designed to facilitate rapid breakdown of recalcitrant solids, on energy recovery rates. I explore the use of microbial electrochemical cells, an alternative energy recovery technology able to produce electricity directly from sludge digestion, as precise reporters of degradation kinetics. Finally, I examine a fundamental kinetic limitation of microbial electrochemical cells, acidification of the anode respiring biofilm, to improve their performance as kinetic sensors or energy recovery technologies.
ContributorsHart, Steven Gregg (Author) / Torres, César I (Thesis advisor) / Parameswaran, Prathap (Committee member) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2020