Matching Items (2)

Filtering by

Clear all filters

Impact of Misting Systems on Local Air Quality

Description

-Please adjust the format of the abstract. m-3 should be typed as "m to the minus 3" with the "minus 3" in superscript
-see the additional "abstract.pdf" document for formatting
In arid environments like Phoenix, many professional and residential outdoor

-Please adjust the format of the abstract. m-3 should be typed as "m to the minus 3" with the "minus 3" in superscript
-see the additional "abstract.pdf" document for formatting
In arid environments like Phoenix, many professional and residential outdoor spaces are cooled by the use of misting systems. These systems spray a fine mist of water droplets that cool down the surrounding air through the endothermic evaporation process. When the water droplets evaporate, they leave behind dissolved material that is present in the water, generating ambient particulate matter (PM). Thus, misting systems are a point source of PM. Currently there is no information on their impact on air quality in close proximity to these systems, or on the chemical composition of the particulate matter generated by the evaporating mist.
In this project, PM concentrations are found to increase on average by a factor of 8 from ambient levels in the vicinity of a residential misting system in controlled experiments. PM concentrations in public places that use misting systems are also investigated. The PM10 concentrations in public places ranged from 0.102 ± 0.010 mg m-3 to 1.47 ± 0.15 mg m-3, and PM2.5 ranged from 0.095 ± 0.010 mg m-3 to 0.99 ± 0.10 mg m-3. Air quality index (AQI) values based on these concentrations indicate that these levels of PM range from unhealthy to hazardous in most cases. PM concentrations tend to decrease after remaining relatively constant with increasing distance from misting systems. Chemical data reveal that chloride and magnesium ions may be used as tracers of aerosolized water from misting systems. The average chloride concentration was 71 µg m-3 in misting samples and below the detection limit for Cl- (< 8.2 µg m-3) in ambient samples. The average magnesium concentration was 11.7 µg m-3 in misting samples and 0.23 µg m-3 in ambient samples.

Contributors

Agent

Created

Date Created
2020-05

The Effects of an Energy Efficiency Retrofit on Indoor Air Quality

Description

To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low‐income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality

To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low‐income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long‐term follow‐up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long‐term follow‐up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex).

Contributors

Agent

Created

Date Created
2015