Matching Items (14)
Filtering by

Clear all filters

152282-Thumbnail Image.png
Description
Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char,

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char, charcoal and soot. These sub-classifications range in particle size, formation temperature, and relative reactivity. Interest in BC has increased because of its role in the long-term storage of organic matter and the biogeochemistry of urban areas. The global BC budget is unbalanced. Production of BC greatly outweighs decomposition of BC. This suggests that there are unknown or underestimated BC removal processes, and it is likely that some of these processes are occurring in soils. However, little is known about BC reactivity in soil and especially in desert soil. This work focuses on soot BC, which is formed at higher temperatures and has a lower relative reactivity than other forms of BC. Here, I assess the contribution of soot BC to central AZ soils and use the isotopic composition of soot BC to identify sources of soot BC. Soot BC is a significant (31%) fraction of the soil organic matter in central AZ and this work suggests that desert and urban soils may be a storage reservoir for soot BC. I further identify previously unknown removal processes of soot BC found naturally in soil and demonstrate that soil soot BC undergoes abiotic (photo-oxidation) and biotic reactions. Not only is soot BC degraded by these processes, but its chemical composition is altered, suggesting that soot BC contains some chemical moieties that are more reactive than others. Because soot BC demonstrates both refractory and reactive character, it is likely that the structure of soot BC; therefore, its interactions in the environment are complex and it is not simply a recalcitrant material.
ContributorsHamilton, George (Author) / Hartnett, Hilairy E (Thesis advisor) / Herckes, Pierre (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2013
Description
-Please adjust the format of the abstract. m-3 should be typed as "m to the minus 3" with the "minus 3" in superscript
-see the additional "abstract.pdf" document for formatting
In arid environments like Phoenix, many professional and residential outdoor spaces are cooled by the use of misting systems. These systems spray

-Please adjust the format of the abstract. m-3 should be typed as "m to the minus 3" with the "minus 3" in superscript
-see the additional "abstract.pdf" document for formatting
In arid environments like Phoenix, many professional and residential outdoor spaces are cooled by the use of misting systems. These systems spray a fine mist of water droplets that cool down the surrounding air through the endothermic evaporation process. When the water droplets evaporate, they leave behind dissolved material that is present in the water, generating ambient particulate matter (PM). Thus, misting systems are a point source of PM. Currently there is no information on their impact on air quality in close proximity to these systems, or on the chemical composition of the particulate matter generated by the evaporating mist.
In this project, PM concentrations are found to increase on average by a factor of 8 from ambient levels in the vicinity of a residential misting system in controlled experiments. PM concentrations in public places that use misting systems are also investigated. The PM10 concentrations in public places ranged from 0.102 ± 0.010 mg m-3 to 1.47 ± 0.15 mg m-3, and PM2.5 ranged from 0.095 ± 0.010 mg m-3 to 0.99 ± 0.10 mg m-3. Air quality index (AQI) values based on these concentrations indicate that these levels of PM range from unhealthy to hazardous in most cases. PM concentrations tend to decrease after remaining relatively constant with increasing distance from misting systems. Chemical data reveal that chloride and magnesium ions may be used as tracers of aerosolized water from misting systems. The average chloride concentration was 71 µg m-3 in misting samples and below the detection limit for Cl- (< 8.2 µg m-3) in ambient samples. The average magnesium concentration was 11.7 µg m-3 in misting samples and 0.23 µg m-3 in ambient samples.
ContributorsKnight, William Louis (Co-author) / Knight, William (Co-author) / Herckes, Pierre (Thesis director) / Fraser, Matthew (Committee member) / Hamilton, Kerry (Committee member) / School of Sustainability (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
171577-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the

Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the efficiency of bioremediation in the subsurface. Specifically, I investigated strategies to (i) promote improve microbial reductive dechlorination extent through the addition of Fe0 and (ii) Cr (VI) bio-reduction through enrichment of specialized microbial consortia. Fe0 can enhance microbial TCE reduction by inducing anoxic conditions and generating H2 (electron donor). I first evaluated the effect of Fe0 on microbial reduction of TCE (with ClO4– as co-contaminant) using semi-batch soil microcosms. Results showed that high concentration of Fe0 expected during in situ remediation inhibited microbial TCE and ClO4– reduction when added together with Dehalococcoides mccartyi-containing cultures. A low concentration of aged Fe0 enhanced microbial TCE dechlorination to ethene and supported complete microbial ClO4– reduction. I then evaluated a decoupled Fe0 and biostimulation/bioaugmentation treatment approach using soil packed columns with continuous flow of groundwater. I demonstrated that microbial TCE reductive dechlorination to ethene can be benefitted by Fe0 abiotic reactions, when biostimulation and bioaugmentation are performed downstream of Fe0 addition. Furthermore, I showed that ethene production can be sustained in the presence of aerobic groundwater (after Fe0 exhaustion) by the addition of organic substrates. I hypothesized that some lessons learned from TCE Bioremediation can be applied also for other pollutants that can benefit from anaerobic reductions, like Cr (VI). Bioremediation of Cr (VI) has historically relied on biostimulation of native microbial communities, partially due to the lack of knowledge of the benefits of adding enriched consortia of specialized microorganisms (bioaugmentation). To determine the merits of a specialized consortium on bio-reduction of Cr (VI), I first enriched a culture on lactate and Cr (VI). The culture had high abundance of putative Morganella species and showed rapid and sustained Cr (VI) bio-reduction compared to a subculture grown with lactate only (without Morganella). Overall, this dissertation work documents possible strategies for synergistic abiotic and biotic chlorinated ethenes reduction, and highlights that specialized consortia may benefit Cr (VI) bio-reduction.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2022
Description

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially outside of a marine environment. Focus on this environment is,

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially outside of a marine environment. Focus on this environment is, in part, due to the existence of biogenic marine sources for both halogens. However, examining iodine and bromine in an urban environment has the potential to provide key insights into the transport and processing of these species in the atmosphere. As Tempe is set within a desert environment, bromine concentration is expected to be relatively high due to its presence in Earth’s crust, while iodine is expected to exist in higher concentrations near the coast. To detect presence and concentration, ICP-MS analysis was performed on samples taken in Tempe, AZ as well as sites in Bakersfield, CA and Davis, CA, which yielded preliminary results in line with these expectations. A secondary set of samples were taken in Tempe, AZ during dust storms, haboobs, and winter holidays. CIC was used to determine the organic fraction. In doing so, this study aims to identify species present in an urban environment as well as potential transportation pathways.

ContributorsLoera, Lourdes (Author) / Herckes, Pierre (Thesis director) / Richert, Ranko (Committee member) / Fraser, Matthew (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
156640-Thumbnail Image.png
Description
Atmospheric particulate matter (PM) has a pronounced effect on our climate, and exposure to PM causes negative health outcomes and elevated mortality rates in urban populations. Reactions that occur in fog can form new secondary organic aerosol material from gas-phase species or primary organic aerosols. It is important to understand

Atmospheric particulate matter (PM) has a pronounced effect on our climate, and exposure to PM causes negative health outcomes and elevated mortality rates in urban populations. Reactions that occur in fog can form new secondary organic aerosol material from gas-phase species or primary organic aerosols. It is important to understand these reactions, as well as how organic material is scavenged and deposited, so that climate and health effects can be fully assessed. Stable carbon isotopes have been used widely in studying gas- and particle-phase atmospheric chemistry. However, the processing of organic matter by fog has not yet been studied, even though stable isotopes can be used to track all aspects of atmospheric processing, from particle formation, particle scavenging, reactions that form secondary organic aerosol material, and particle deposition. Here, carbon isotope analysis is used for the first time to assess the processing of carbonaceous particles by fog.

This work first compares carbon isotope measurements (δ13C) of particulate matter and fog from locations across the globe to assess how different primary aerosol sources are reflected in the atmosphere. Three field campaigns are then discussed that highlight different aspects of PM formation, composition, and processing. In Tempe, AZ, seasonal and size-dependent differences in the δ13C of total carbon and n-alkanes in PM were studied. δ13C was influenced by seasonal trends, including inversion, transport, population density, and photochemical activity. Variations in δ13C among particle size fractions were caused by sources that generate particles in different size modes.

An analysis of PM from urban and suburban sites in northeastern France shows how both fog and rain can cause measurable changes in the δ13C of PM. The δ13C of PM was consistent over time when no weather events occurred, but particles were isotopically depleted by up to 1.1‰ in the presence of fog due to preferential scavenging of larger isotopically enriched particles. Finally, the δ13C of the dissolved organic carbon in fog collected on the coast of Southern California is discussed. Here, temporal depletion of the δ13C of fog by up to 1.2‰ demonstrates its use in observing the scavenging and deposition of organic PM.
ContributorsNapolitano, Denise (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2018
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
153476-Thumbnail Image.png
Description
The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in

The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in the North America; there are seventeen large dams along the Colorado and Green River. DOC in rivers and in the lakes formed by dams (reservoirs) undergo photo-chemical and bio-degradation. DOC concentration and composition in these systems were investigated using bulk concentration, optical properties, and fluorescence spectroscopy. The riverine DOC concentration decreased from upstream to downstream but there was no change in the specific ultraviolet absorbance at 254 nm (SUVA254). Total fluorescence also decreased along the river. In general, the fluorescence index (FI) increased slightly, the humification index (HIX) decreased, and the freshness index (β/α) increased from upstream to downstream. Photo-oxidation and biodegradation experiments were used to determine if the observed changes in DOC composition along the river could be driven by these biogeochemical alteration processes.

In two-week natural sunlight photo-oxidation experiments the DOC concentration did not change, while the SUVA254 and TF decreased. In addition, the FI and ‘freshness’ increased and HIX decreased during photo-oxidation. Photo-oxidation can explain the upstream to downstream trends for TF, FI, HIX, and freshness observed in river water. Serial photo-oxidation and biodegradation experiments were performed on water collected from three sites along the Colorado River. Bulk DOC concentration in all samples decreased during the biodegradation portion of the study, but DOC bioavailability was lower in samples that were photo-oxidized prior to the bioavailability study.

The upstream to downstream trends in DOC concentration and composition along the river can be explained by a combination of photo-chemical and microbial degradation. The bulk DOC concentration change is primarily driven by microbial degradation, while the changes in the composition of the fluorescent DOC are driven by photo-oxidation.
ContributorsBowman, Margaret (Author) / Hartnett, Hilairy E (Thesis advisor) / Hayes, Mark A. (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
153317-Thumbnail Image.png
Description
Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy

Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA).

To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and 46% of the non-smoking units had traces of at least one of the nitrosamines.
ContributorsFrey, Sarah E (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Destaillats, Hugo (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2014
156470-Thumbnail Image.png
Description
Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology, though their interpretation is often tricky. Many lipid structures are

Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology, though their interpretation is often tricky. Many lipid structures are shared among organisms and function in many geochemical conditions and extremes. I argue it is useful to interpret lipid distributions as a balance of functional necessity and energy cost. This work utilizes a quantitative thermodynamic framework for interpreting energetically driven adaptation in lipids.

Yellowstone National Park is a prime location to study biological adaptations to a wide range of temperatures and geochemical conditions. Lipids were extracted and quantified from thermophilic microbial communities sampled along the temperature (29-91°C) and chemical gradients of four alkaline Yellowstone hot springs. I observed that decreased alkyl chain carbon content, increased degree of unsaturation, and a shift from ether to ester linkage caused a downstream increase in the average oxidation state of carbon (ZC) I hypothesized these adaptations were selected because they represent cost-effective solutions to providing thermostable membranes.

This hypothesis was explored by assessing the relative energetic favorability of autotrophic reactions to form alkyl chains from known concentrations of dissolved inorganic species at elevated temperatures. I found that the oxidation-reduction potential (Eh) predicted to favor formation of sample-representative alkyl chains had a strong positive correlation with Eh calculated from hot spring water chemistry (R2 = 0.72 for the O2/H2O redox couple). A separate thermodynamic analysis of bacteriohopanepolyol lipids found that predicted equilibrium abundances of observed polar headgroup distributions were also highly correlated with Eh of the surrounding water (R2= 0.84). These results represent the first quantitative thermodynamic assessment of microbial lipid adaptation in natural systems and suggest that observed lipid distributions represent energetically cost-effective assemblages along temperature and chemical gradients.
ContributorsBoyer, Grayson Maxwell (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018