Matching Items (3)
Filtering by

Clear all filters

150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
132749-Thumbnail Image.png
Description

This study examined crayfish diet within varying hydrologic environment in lotic systems using stable isotope analysis of crayfish and basal resources to add depth to previous findings. Crayfish are numerous and are omnivorous, opportunistic feeders, feeding on invertebrates, vegetation and detritus. Arizona streams stand apart from the Eastern and Northwestern

This study examined crayfish diet within varying hydrologic environment in lotic systems using stable isotope analysis of crayfish and basal resources to add depth to previous findings. Crayfish are numerous and are omnivorous, opportunistic feeders, feeding on invertebrates, vegetation and detritus. Arizona streams stand apart from the Eastern and Northwestern aquatic ecosystems of the United States because Arizona has no native crayfish species. Two species have been introduced and become widely established in Arizona (Orconectes virilis and Procambarus clarkii), with concern for further introduction of crayfish species and more information on how these two species impact the native species in the streams is needed. Previous studies have focused on crayfish abundance with hydrologic variation and crayfish diets within a lentic system, but few have focused on how the diet of consumers varies with hydrologic variability. Crayfish are hardy and have a dramatically increasing population within Arizona and therefore inhabit systems with a wide range of hydrologic variability which may contribute to spatial variability. The results show that crayfish diets do show a significant level of seasonal variation in some study locations, in both C source and trophic level. Hydrologic variation was also shown to impact crayfish diet at several study sites, with increasing magnitude of event (both floods and droughts) correlating with a change toward more aquatic C sources and lower trophic position in several of the study sites. In some locations, the correlation was not as strong with variation and diet change and showed less change in C source and rather showed an increase in trophic position.

ContributorsThompson, Sara Nicole (Author) / Sabo, John L. (Thesis director) / Grimm, Nancy (Committee member) / Baruch, Ethan M. (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05