Matching Items (32)
Filtering by

Clear all filters

152753-Thumbnail Image.png
Description
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
ContributorsPope, Ronald L (Author) / Wu, Jianguo (Thesis advisor) / Boone, Christopher G. (Committee member) / Brazel, Anthony J. (Committee member) / Forzani, Erica S. (Committee member) / Fraser, Matthew P. (Committee member) / Arizona State University (Publisher)
Created2014
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
150052-Thumbnail Image.png
Description
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships.

The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships. The first step towards understanding the effects of spatial heterogeneity on the BEF relationships is to quantify spatial heterogeneity characteristics of key variables of biodiversity and ecosystem functioning, and identify the spatial relationships among these variables. The goal of our research was to address the following research questions based on data collected in 2005 (corresponding to the year when the initial site background information was conducted) and in 2008 (corresponding to the year when removal treatments were conducted) from the Inner Mongolia Grassland Removal Experiment (IMGRE) located in northern China: 1) What are the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass in a natural grassland community of Inner Mongolia, China? How are they related spatially? and 2) How do removal treatments affect the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass? Is there any change for their spatial correlations after removal treatments? Our results showed that variables of biodiversity and ecosystem functioning in the natural grassland community would present different spatial patterns, and they would be spatially correlated to each other closely. Removal treatments had a significant effect on spatial structures and spatial correlations of variables, compared to those prior to the removal treatments. The differences in spatial pattern of plant and soil variables and their correlations before and after the biodiversity manipulation may not imply that the results from BEF experiments like IMGRE are invalid. However, they do suggest that the possible effects of spatial heterogeneity on the BEF relationships should be critically evaluated in future studies.
ContributorsYuan, Fei (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew T. (Committee member) / Rowe, Helen I (Committee member) / Arizona State University (Publisher)
Created2011
153813-Thumbnail Image.png
Description
A global warming of two degrees Celsius is predicted to drive almost half the world's lizard populations to extinction. Currently, the Phoenix metropolitan region in Arizona, USA, is an average of 3 oC warmer than the surrounding desert. Using a bare lot as a control, I placed copper lizard models

A global warming of two degrees Celsius is predicted to drive almost half the world's lizard populations to extinction. Currently, the Phoenix metropolitan region in Arizona, USA, is an average of 3 oC warmer than the surrounding desert. Using a bare lot as a control, I placed copper lizard models with data loggers in several vegetation and irrigation treatments that represent the dominant backyard landscaping styles in Phoenix (grassy mesic with mist irrigation, drip irrigated xeric, unirrigated native, and a hybrid style known as oasis). Lizard activity time in summer is currently restricted to a few hours in un-irrigated native desert landscaping, while heavily irrigated grass and shade trees allow for continual activity during even the hottest days. Maintaining the existing diversity of landscaping styles (as part of an ongoing mitigation strategy targeted at humans) will be beneficial for lizards.

Fourteen native lizard species inhabit the desert surrounding Phoenix, AZ, USA, but only two species persist within heavily developed areas. This pattern is best explained by a combination of socioeconomic status, land cover, and location. Lizard diversity is highest in affluent areas and lizard abundance is greatest near large patches of open desert. The percentage of building cover has a strong negative impact on both diversity and abundance. Despite Phoenix's intense urban heat island effect, which strongly constrains the potential activity and microhabitat use of lizards in summer, thermal patterns have not yet impacted their distribution and relative abundance at larger scales.
ContributorsAckley, Jeffrey (Author) / Wu, Jianguo (Thesis advisor) / Sullivan, Brian (Thesis advisor) / Myint, Soe (Committee member) / DeNardo, Dale (Committee member) / Angilletta Jr., Michael (Committee member) / Arizona State University (Publisher)
Created2015
156242-Thumbnail Image.png
Description
Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape-

Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape- and patch-based studies that have caused significant uncertainty concerning fragmentation’s effects on biological communities. Here I tested the hypothesis that habitat fragmentation alters biological communities by creating hierarchically nested selective pressures across plot-, patch-, and landscape-scales using woody plant community datasets from Thousand Island Lake, China. In this archipelago edge-effects had little impact on species-diversity. However, the amount of habitat in the surrounding landscape had a positive effect on species richness at the patch-scale and sets of small islands accumulated species faster than sets of large islands of equal total size at the landscape-scale. In contrast, at the functional-level edge-effects decreased the proportion of shade-tolerant trees, island-effects increased the proportion of shade- intolerant trees, and these two processes interacted to alter the functional composition of the regional pool when the total amount of habitat in the landscape was low. By observing interdependent fragmentation-mediated effects at each scale, I found support for the hypothesis that habitat fragmentation’s effects are hierarchically structured.
ContributorsWilson, Maxwell (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew (Committee member) / Hall, Sharon (Committee member) / Jiang, Lin (Committee member) / Cease, Arianne (Committee member) / Arizona State University (Publisher)
Created2018
136641-Thumbnail Image.png
Description
This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as

This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as well as contemporary fire policy, a history of wildfire in Arizona, and two recent fires in Sedona, AZ. The two fires in Sedona, the Brins Fire of 2006 and the Slide Fire of 2014, act as a focal point for this ecological management transition, as even within an 8-year period, we can see the different ways the two fires were managed and the transition to a greater ecological importance in management strategies. These all came together to give a full spectrum for the factors that have led to more ecologically-prominent wildfire management strategies in Arizona.
ContributorsGeorge-Sills, Dylan (Author) / Pyne, Stephen (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2015-05
136299-Thumbnail Image.png
Description
Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing

Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing evaporation from soil, but at higher densities, surface rocks may also have a negative impact on water availability by limiting water infiltration or light availability. However, the direct relationship between rock cover and aboveground net primary productivity (ANPP), a proxy for NPP, is not well understood. In this research we explore the relationship between rock cover, ANPP, and soil nutrient availability. We conducted a rock cover survey on long-term fertilized plots at fifteen sites in the Sonoran Desert and used 4 years of data from annual plant biomass surveys to determine the relationship between peak plant biomass and surface rock cover. We performed factorial ANCOVA to assess the relationship among annual plant biomass, surface rocks, precipitation, and fertilization treatment. Overall we found that precipitation, nutrients, and rock cover influence growth of Sonoran Desert annual plants. Rock cover had an overall negative relationship with annual plant biomass, but did not show a consistent pattern of significance over four years of study and with varying average winter precipitation.
ContributorsShaw, Julea Anne (Author) / Hall, Sharon (Thesis director) / Sala, Osvaldo (Committee member) / Cook, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133966-Thumbnail Image.png
Description
In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our

In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our society do not command the scientific literacy necessary to address important societal issues and concerns" (NCES 2012, p.11). Additionally, far too many people are incapable of thinking long term and understanding how their actions affect others. Because of this shortsightedness our world is facing one of its biggest ecological crises \u2014 global warming confounded by overpopulation and overconsumption. Now, more than ever, it is critical "for our young people to have a basic understanding of the relevant scientific ideas, technologies and ethical issues and powers of reasoning, to be prepared to face these issues" (Harlen et al., 2015). I believe that investigating innovative ways to teach ecology could be an important step to accomplishing this. Learning to think like a scientist forces people to rely on facts, follow similar protocols to deduce these facts, and be able to think critically about misleading events. More specifically, ecology education will allow people to develop those skills while also learning about team work, open-mindedness, and their environment. Ecology is defined as "the branch of biology that deals with the relations of organisms to one another and to their physical surroundings" (Dictionary.com, 2018). It is clear that this subcategory of science could act as a powerful introduction to the scientific world and how we relate to it. Its introduction at a young age has the potential to create a generation of conscientious and curious lifelong learners. In an attempt to support effective ways to teach ecology, I developed an educational unit and applied it in different educational contexts. My target audience was elementary aged students and I tested this unit with children in Phoenix Metropolitan Area afterschool programs. I taught core concepts of ecology \u2014 the water cycle, the sun's energy, plants and photosynthesis, and food webs \u2014in a sequence of lesson plans that build upon each other. Finally, I determined the appropriate age group and setting for these lesson plans through research and in-class observations. In this document, I explain the process I went through in developing my lesson plans, why I felt compelled to make them, and my experiences in implementing them.
ContributorsVotaw, Alexandra Lindsay (Author) / Larson, Kelli (Thesis director) / Herrmann, Lisa (Committee member) / York, Abigail (Committee member) / School of Art (Contributor) / The Design School (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133650-Thumbnail Image.png
Description
Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while

Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while simultaneously producing almost 40% of the globally emitted methane (Schmidt et al., 2016), making peatlands an important component of the carbon budgets. Published research indicates that the efficiency of carbon usage among microbial communities can determine the soil-carbon response to rising temperatures (Allison et al. 2010). By determining carbon consumption in peatland soils, total community respiration response, and community structure change with additions, models of carbon use efficiency in permafrost peatlands will be well-informed and have a better understanding of how the peatlands will respond to, and utilize, increased availability of carbon compounds due to the melting permafrost. To do this, we will sequence Lutose deep core samples to observe baseline microbial community structure at different depths and different age-gradients, construct substrate incubations of glucose and propionate and observe community respiration response via a gas chromatography flame ionization detector, track the glucose and propionate additions with high-performance liquid chromatography (HPLC), and sequence the samples once more to determine if there was a deviation from the initial community structure obtained prior to the incubations. We found that our initial sequencing data was supported by previous work (Lin et al., 2014), however we were unable to sequence samples post-incubation due to time constraints. In this sequencing analysis we found that the strongest variable that made samples biologically similar was the age-gradient site in which they were extracted. We found that the group with glucose additions produced the most carbon dioxide compared with the other treatments, but was not the treatment that dominated the production of methane. Finally, in the HPLC samples that were analyzed, we found that glucose is likely forming the most by-product accumulation from mass balance calculations, while propionate is likely forming the least. Future experimentation should focus on the shortcomings of this experiment. Further analysis of 16S rRNA sequencing data from after the incubations should be analyzed to determine the change in microbial community structure throughout the experiment. Furthermore, HPLC analysis for the several samples need to be done and followed up with mass balance to determine where the added glucose and propionate are being allocated within the soil. Once these pieces of the puzzle are put into place, our original question of how the microbial community structure changes at different depths and age-gradients within permafrost peatlands will be conclusively answered.
ContributorsFrese, Alexander Nicholas (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / van Paassen, Leon (Committee member) / Sarno, Analissa (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137211-Thumbnail Image.png
Description
Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range

Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range of plant and animal species in both continuous and episodic fashions. This study aimed to gain a better understanding of the relationship between streamflow permanence and patterns of biomass and secondary production of the riparian fauna these ecosystems support. This was accomplished through a yearlong survey in the Huachuca Mountains of Southeastern, Arizona where macroinvertebrates were collected at various sites along a gradient of streamflow permanence before, during, and after the three month monsoon season that supplies most of the annual rainfall in this region. The results of my surveys indicate that 1) Sites characterized by low streamflow permanence were more responsive to changes in precipitation than sites characterized by relatively high streamflow permanence 2) In ephemeral streams, there is a significant peak in terrestrial macroinvertebrate production and biomass both during and after the monsoon season 3) streamflow permanence may convey consistent but not exceptional secondary production whereas seasonality in rainfall may convey exceptional but episodic secondary production—more so in sites where streamflow is not consistent.
ContributorsMcCartin, Michael Patrick (Author) / Sabo, John (Thesis director) / Stromberg, Juliet (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05