Matching Items (22)
Filtering by

Clear all filters

150078-Thumbnail Image.png
Description
In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude

In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude in Saguaro Lake, and that community structure differed. The purpose of this investigation was to determine why the reservoirs are different, and focused on physical characteristics of the water column, nutrient concentration, community structure of phytoplankton and zooplankton, and trophic cascades induced by fish populations. I formulated the following hypotheses: 1) Top-down control varies between the two reservoirs. The presence of piscivore fish in Lake Pleasant results in high grazer and low primary producer biomass through trophic cascades. Conversely, Saguaro Lake is controlled from the bottom-up. This hypothesis was tested through monthly analysis of zooplankton and phytoplankton communities in each reservoir. Analyses of the nutritional value of phytoplankton and DNA based molecular prey preference of zooplankton provided insight on trophic interactions between phytoplankton and zooplankton. Data from the Arizona Game and Fish Department (AZGFD) provided information on the fish communities of the two reservoirs. 2) Nutrient loads differ for each reservoir. Greater nutrient concentrations yield greater primary producer biomass; I hypothesize that Saguaro Lake is more eutrophic, while Lake Pleasant is more oligotrophic. Lake Pleasant had a larger zooplankton abundance and biomass, a larger piscivore fish community, and smaller phytoplankton abundance compared to Saguaro Lake. Thus, I conclude that Lake Pleasant was controlled top-down by the large piscivore fish population and Saguaro Lake was controlled from the bottom-up by the nutrient load in the reservoir. Hypothesis 2 stated that Saguaro Lake contains more nutrients than Lake Pleasant. However, Lake Pleasant had higher concentrations of dissolved nitrogen and phosphorus than Saguaro Lake. Additionally, an extended period of low dissolved N:P ratios in Saguaro Lake indicated N limitation, favoring dominance of N-fixing filamentous cyanobacteria in the phytoplankton community in that reservoir.
ContributorsSawyer, Tyler R (Author) / Neuer, Susanne (Thesis advisor) / Childers, Daniel L. (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2011
152261-Thumbnail Image.png
Description
Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid

Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid land soils, these microbial communities and factors are not well understood. I aimed to study the role of N cycling microbes, such as the ammonia-oxidizing bacteria (AOB), the recently discovered ammonia-oxidizing archaea (AOA), and various fungal groups, in soils of arid lands. I also tested if niche differentiation among microbial populations is a driver of differential biogeochemical outcomes. I found that N cycling microbial communities in arid lands are structured by environmental factors to a stronger degree than what is generally observed in mesic systems. For example, in biological soil crusts, temperature selected for AOA in warmer deserts and for AOB in colder deserts. Land-use change also affects niche differentiation, with fungi being the major agents of N2O production in natural arid lands, whereas emissions could be attributed to bacteria in mesic urban lawns. By contrast, NO3- production in the native desert and managed soils was mainly controlled by autotrophic microbes (i.e., AOB and AOA) rather than by heterotrophic fungi. I could also determine that AOA surprisingly responded positively to inorganic N availability in both short (one month) and long-term (seven years) experimental manipulations in an arid land soil, while environmental N enrichment in other ecosystem types is known to favor AOB over AOA. This work improves our predictions of ecosystem response to anthropogenic N increase and shows that paradigms derived from mesic systems are not always applicable to arid lands. My dissertation also highlights the unique ecology of ammonia oxidizers and draws attention to the importance of N cycling in desert soils.
ContributorsMarusenko, Yevgeniy (Author) / Hall, Sharon J (Thesis advisor) / Garcia-Pichel, Ferran (Thesis advisor) / Mclain, Jean E (Committee member) / Schwartz, Egbert (Committee member) / Arizona State University (Publisher)
Created2013
149563-Thumbnail Image.png
Description
This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix

This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix basin along Cave Creek (CC). Soil properties, annual herbaceous biomass and the physical properties of alignments and surface soils were measured and compared across the landscape, specifically on: 1) agricultural rock alignments that were near the archaeological site 2) geologically formed rock alignments that were located 0.5-1 km away from settlements; and 3) areas both near and far from settlements where rock alignments were absent. At AFNM, relatively well-built rock alignments have altered soil properties and processes while less-intact alignments at CC have left few legacies.
ContributorsTrujillo, Jolene Eve (Author) / Hall, Sharon J (Thesis advisor) / Collins, Scott L. (Committee member) / Spielmann, Katherine A. (Committee member) / Arizona State University (Publisher)
Created2011
149430-Thumbnail Image.png
Description
As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge

As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge groundwater and riparian vegetation to prosper along canal banks. As there is growing interest in managing landscapes for multiple ecosystem services, this study was undertaken to determine if irrigation canals function as an extension of the riparian corridor. I was specifically interested in determining if the processes within semi-arid streams that drive riparian plant community structure are manifested in earthen irrigation ditches. I examined herbaceous and woody vegetation along the middle Verde River, AZ, USA and three adjacent irrigation ditches across six months. I also collected sieved hydrochores--seeds dispersing through water--within ditches and the river twelve times. Results indicate that ditch vegetation was similar to streamside river vegetation in abundance (cover and basal area) due to surface water availability but more diverse than river streamside vegetation due to high heterogeneity. Compositionally, herbaceous vegetation along the ditch was most similar to the river banks, while low disturbance fostered woody vegetation along the ditches similar to high floodplain and river terrace vegetation. Hydrochore richness and abundance within the river was dependent on seasonality and stream discharge, but these relationships were dampened in the ditches. Species-specific strategies of hydrochory, however, did emerge in both systems. Strategies include pulse species, which disperse via hydrochory in strict accordance with their restricted dispersal windows, constant species, which are year round hydrochores, and combination species, which show characteristics of both. There was high overlap in the composition of hydrochores in the two systems, with obligate wetland species abundant in both. Upland species were more seasonally constant and abundant in the ditch water than the river. The consistency of river processes and similarity of vegetation suggest that earthen irrigation ditches do function as an extension of the riparian corridor. Thus, these man-made irrigation ditches should be considered by stakeholders for their multiple ecosystem services.
ContributorsBetsch, Jacqueline Michelle (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon J (Committee member) / Merritt, David M. (Committee member) / Arizona State University (Publisher)
Created2010
171536-Thumbnail Image.png
Description
More people live in cities or metropolitan areas than ever before, which encompass many types of urbanization. These areas are culturally diverse and densely populated heterogeneous landscapes that are shaped by socio-ecological patterns. Cities support human and wildlife populations that are influenced indirectly and directly by human decisions. This process

More people live in cities or metropolitan areas than ever before, which encompass many types of urbanization. These areas are culturally diverse and densely populated heterogeneous landscapes that are shaped by socio-ecological patterns. Cities support human and wildlife populations that are influenced indirectly and directly by human decisions. This process can result in unequal access to environmental services and accessible green spaces. Additionally, biodiversity distribution is influenced by human decisions. Although neighborhood income can drive biodiversity in metropolitan areas (i.e., the ‘luxury effect’), other socio-cultural factors may also influence the presence and abundance of wildlife beyond simple measures of wealth. To understand how additional social factors shape distributions of wildlife, I ask, are patterns of wildlife distribution associated with neighborhood ethnicity, in addition to income and ecological landscape characteristics within metropolitan areas? Utilizing data from 38 wildlife cameras deployed in neighborhood public parks and non-built spaces in metro Phoenix, AZ (USA), I estimated occupancy and activity patterns of coyotes (Canis latrans), desert cottontail rabbits (Sylvilagus audubonii), and domestic cats (Felis catus) across gradients of median household income and neighborhood ethnicity, estimated by the proportion of Latinx residents. Neighborhood ethnicity appeared in the top models for all species, and neighborhood % of Latinx residents was inversely associated with presence of native Sonoran Desert animals (coyotes and cottontail rabbits). Furthermore, daily activity patterns of coyotes differed in neighborhoods with higher vs. lower proportion of Latinx residents. My results suggest that socio-cultural variables beyond income are associated with wildlife distributions, and that factors associated with neighborhood ethnicity may be an informative correlate of city-wide ecological patterns. In this research, I unraveled predictive social variables and differentiated wildlife distribution across neighborhood gradients of income and ethnic composition, bringing attention to the potentially unequal distribution of mammals in cities.
ContributorsCocroft, Alexandreana (Author) / Hall, Sharon J (Thesis advisor) / Lerman, Susannah B (Committee member) / Lewis, Jesse (Committee member) / Arizona State University (Publisher)
Created2022
189248-Thumbnail Image.png
Description
With a growing majority of humans living within cities and towns, urbanization is one of the most persistent drivers of change in global land use and challenges to sustainability and biodiversity conservation. The development of cities and towns can substantially shape local and regional environments in which wildlife communities persist.

With a growing majority of humans living within cities and towns, urbanization is one of the most persistent drivers of change in global land use and challenges to sustainability and biodiversity conservation. The development of cities and towns can substantially shape local and regional environments in which wildlife communities persist. Although urbanization can negatively affect wildlife communities – through processes such as habitat fragmentation and non-native species introduction – cities can also provide resources to wildlife, such as through food, water, and space, creating potential opportunities for conservation. However, managing wildlife communities persisting in urbanizing landscapes requires better understanding of how urbanized landscapes influence the ability of wildlife to coexist with one another and with people at local and regional scales. In this dissertation, I addressed these research needs by evaluating the environmental and human factors driving dynamic wildlife community distributions and people’s attitudes towards wildlife. In my first two chapters,I used wildlife camera data collected from across the Phoenix Metropolitan Area, AZ to examine seasonal patterns of wildlife space use, species richness, and interspecific interactions across levels of urbanization with varying landscape characteristics, including plant productivity and spatial land use heterogeneity. Here I found that urbanization was a primary driver of wildlife community characteristics within the region, but that seasonal resource availability and landscape heterogeneity could have mediating influences that require further exploration. In my third chapter, I partnered with wildlife researchers across North America to examine how relationships between urbanization and community composition vary among cities with distinct social-ecological characteristics, finding that effects of local urbanization were more negative in warmer, less vegetated, and more urbanized cities. In my fourth and final chapter, I explored the potential for human-wildlife coexistence by examining how various ideological, environmental, and sociodemographic factors influenced Phoenix area residents’ level of comfort living near different wildlife groups. Although I found that residents’ attitudes were primarily shaped by their relatively static wildlife values, comfort living near wildlife also depended on the characteristics of the neighboring environment, of the residents, and of the wildlife involved, indicating the potential for facilitating conditions for human-wildlife coexistence. Altogether, the findings of this dissertation suggest that the management of wildlife and their interactions with people within cities would benefit from more proactive and holistic consideration of the interacting environmental, wildlife, and human characteristics that influence the persistence of biodiversity within an increasingly urbanized world.
ContributorsHaight, Jeffrey Douglas (Author) / Hall, Sharon J (Thesis advisor) / Lewis, Jesse S (Thesis advisor) / Larson, Kelli L (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2023
157262-Thumbnail Image.png
Description
Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues through ecosystem services (e.g. stormwater retention or treatment). The growing use of UEI to address urban sustainability challenges can bring

Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues through ecosystem services (e.g. stormwater retention or treatment). The growing use of UEI to address urban sustainability challenges can bring together teams of urban researchers and practitioners to co-produce UEI design, monitoring and maintenance. However, this co-production process received little attention in the literature, and has not been studied in the Phoenix Metro Area.

I examined several components of a co-produced design process and related project outcomes associated with a small-scale UEI project – bioswales installed at the Arizona State University (ASU) Orange Mall and Student Pavilion in Tempe, AZ. Specifically, I explored the social design process and ecohydrological and biogeochemical outcomes associated with development of an ecohydrological monitoring protocol for assessing post-construction landscape performance of this site. The monitoring protocol design process was documented using participant observation of collaborative project meetings, and semi-structured interviews with key researchers and practitioners. Throughout this process, I worked together with researchers and practitioners to co-produced a suite of ecohydrological metrics to monitor the performance of the bioswales (UEI) constructed at Orange Mall, with an emphasis on understanding stormwater dynamics. I then installed and operated monitoring equipment from Summer 2018 to Spring 2019 to generate data that can be used to assess system performance with respect to the co-identified performance metrics.

The co-production experience resulted in observable change in attitudes both at the individual and institutional level with regards to the integration and use of urban ecological research to assess and improve UEI design. My ecological monitoring demonstrated that system performance met design goals with regards to stormwater capture, and water quality data suggest the system’s current design has some capacity for stormwater treatment. These data and results are being used by practitioners at ASU and their related design partners to inform future design and management of UEI across the ASU campus. More broadly, this research will provide insights into improving the monitoring, evaluation, and performance efficacy associated with collaborative stormwater UEI projects, independent of scale, in arid cities.
ContributorsSanchez, Christopher A (Author) / Childers, Daniel L. (Thesis advisor) / Cheng, Chingwen (Committee member) / York, Abigail M (Committee member) / Arizona State University (Publisher)
Created2019
153844-Thumbnail Image.png
Description
As a result of growing populations and uncertain resource availability, urban areas are facing pressure from federal and state agencies, as well as residents, to promote conservation programs that provide services for people and mitigate environmental harm. Current strategies in US cities aim to reduce the impact of municipal and

As a result of growing populations and uncertain resource availability, urban areas are facing pressure from federal and state agencies, as well as residents, to promote conservation programs that provide services for people and mitigate environmental harm. Current strategies in US cities aim to reduce the impact of municipal and household resource use, including programs to promote water conservation. One common conservation program incentivizes the replacement of water-intensive turfgrass lawns with landscapes that use less water consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). A handful of previous studies in experimental landscapes have shown that converting a turfgrass yard to a shrub-dominated landscape has the potential to increase rates of nitrate (NO3-) leaching. However, no studies have examined the drivers or patterns across diverse management practices. In this research, I compared soil nutrient retention and cycling in turfgrass and lawn-alternative xeriscaped yards along a chronosequence of time since land cover change in Tempe, Arizona, in the semi-arid US Southwest. Soil inorganic extractable nitrogen (N) pools were greater in xeriscapes compared to turfgrass lawns. On average xeriscapes contained 2.5±0.4 g NO3--N/m2 in the first 45 cm of soil, compared to 0.6±0.7 g NO3--N/m2 in lawns. Soil NO3--N pools in xeriscaped yards also varied significantly with time: pools were largest 9-13 years after cover change and declined to levels comparable to turfgrass at 18-21 years. Variation in soil extractable NO3--N with landscape age was strongly influenced by management practices that control soil water availability, including shrub cover, the presence of sub-surface plastic sheeting, and the frequency of irrigation. This research is the first to explore the ecological outcomes and temporal dynamics of an increasingly common, ‘sustainable’ land use practice that is universally promoted in US cities. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of NO3--N that may be lost from the soil rooting zone over time, through leaching following irrigation or rainfall. These results have implications for best management practices to optimize the benefits of water-conserving residential yards.
ContributorsHeavenrich, Hannah (Author) / Hall, Sharon J (Thesis advisor) / Larson, Kelli L (Committee member) / Potaki, Diane E (Committee member) / Arizona State University (Publisher)
Created2015
154161-Thumbnail Image.png
Description
Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from changing climate norms. The overarching question of my dissertation research was: How does urban vegetation change in response to human behavior? To answer this question, I conducted multiscale research in an arid urban ecosystem as well as in a virtual desert city. I used a combination of long-term data and agent-based modeling to examine changes in vegetation across a range of measures influenced by biophysical, climate, institutional, and socioeconomic drivers. At the regional scale, total plant species diversity increased from 2000 to 2010, while species composition became increasingly homogeneous in urban and agricultural areas. At the residential scale, I investigated the effects of biophysical and socioeconomic drivers – the Great Recession of 2007-2010 in particular – on changing residential yard vegetation in Phoenix, AZ. Socioeconomic drivers affected plant composition and increasing richness, but the housing boom from 2000 through 2005 had a stronger influence on vegetation change than the subsequent recession. Surprisingly, annual plant species remained coupled to winter precipitation despite my expectation that their dynamics might be driven by socioeconomic fluctuations. In a modeling experiment, I examined the relative strength of psychological, social, and governance influences on large-scale urban land cover in a desert city. Model results suggested that social norms may be strong enough to lead to large-scale conversion to low water use residential landscaping, and governance may be unnecessary to catalyze residential landscape conversion under the pressure of extreme drought conditions. Overall, my dissertation research showed that urban vegetation is dynamic, even under the presumably stabilizing influence of human management activities. Increasing climate pressure, unexpected socioeconomic disturbances, growing urban populations, and shifting policies all contribute to urban vegetation dynamics. Incorporating these findings into planning policies will contribute to the sustainable management of urban ecosystems.
ContributorsRipplinger, Julie (Author) / Franklin, Janet (Thesis advisor) / Collins, Scott L. (Thesis advisor) / Anderies, John M (Committee member) / Childers, Daniel L. (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2015
154182-Thumbnail Image.png
Description
Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these

Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these fisheries are intense, poorly regulated, and overlap with foraging hot spots of endangered sea turtles. In partnership with researchers, fishers, managers, and practitioners from Mexico and the United States, I documented bycatch rates of loggerhead turtles at BCS that represent the highest known megafauna bycatch rates worldwide. Concurrently, I conducted a literature review that determined gear modifications were generally more successful than other commonly used fisheries management strategies for mitigating bycatch of vulnerable megafauna including seabirds, marine mammals, and sea turtles. I then applied these results by partnering with researchers, local fishers, and Mexico’s federal fisheries science agency to develop and test two gear modifications (i.e. buoyless and illuminated nets) in operating net fisheries at BCS as potential solutions to reduce bycatch of endangered sea turtles, improve fisheries sustainability, and maintain fisher livelihoods. I found that buoyless nets significantly reduced mean turtle bycatch rates by 68% while maintaining target catch rates and composition. By contrast, illuminated nets did not significantly reduce turtle bycatch rates across day-night periods, although they reduced mean turtle bycatch rates by 50% at night. Illuminated nets, however, significantly reduced mean rates of total bycatch biomass by 34% across day-night periods while maintaining target fish catch and market value. I conclude with a policy analysis of the unilateral identification of Mexico by the U.S. State Department under section 610 of the Magnusson-Stevens Fishery Conservation and Management Act for failure to manage bycatch of loggerhead turtles at BCS. Taken together, the gear modifications developed and tested here represent promising bycatch mitigation solutions with strong potential for commercial adoption, but fleet-wide conversion to more selective and turtle-friendly gear (e.g. hook and line and/or traps) at BCS, coupled with coordinated international conservation action, is ultimately needed to eliminate sea turtle bycatch and further improve fisheries sustainability.
ContributorsSenko, Jesse (Author) / Smith, Andrew (Thesis advisor) / Boggess, May (Committee member) / Chhetri, Nalini (Committee member) / Jenkins, Lekelia (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2015