Matching Items (3)
Filtering by

Clear all filters

168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
158407-Thumbnail Image.png
Description

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence ecological functioning, such as the provisioning of biodiversity. Likewise, people are influenced by, and respond to, their environment. However, there is a lack of integrated research, especially research that considers the spatial and temporal complexities of social-ecological dynamics, to fully understand how people influence ecosystems or how the resulting landscape in turn influences human decision making, attitudes, and well-being.

My dissertation connects these interdisciplinary themes to examine three questions linked by their investigation of the interactions between people and biodiversity: (1) How do the social and spatial patterns within an arid city affect people’s attitudes about their regional desert environment? (2) How are novel communities in cities assembled given the social-ecological dynamics that influence the processes that structure ecological communities? (3) How can we reposition bird species traits into a conservation framework that explains the complexity of the interactions between people and urban bird communities? I found that social-ecological dynamics between people, the environment, and biodiversity are tightly interwoven in urban ecosystems. The regional desert environment shapes people’s attitudes along spatial and social configurations, which holds implications for yard management decisions. Multi-scalar management decisions then influence biodiversity throughout cities, which shifts public perceptions of urban nature. Overall, my research acts as a bridge between social and ecological sciences to theoretically and empirically integrate research focused on biodiversity conservation in complex, social-ecological systems. My goal as a scholar is to understand the balance between social and ecological implications of landscape change to support human well-being and promote biodiversity conservation.

ContributorsAndrade, Riley (Author) / Franklin, Janet (Thesis advisor) / Larson, Kelli L (Thesis advisor) / Hondula, David M. (Committee member) / Lerman, Susannah B (Committee member) / Arizona State University (Publisher)
Created2020