Matching Items (4)
Filtering by

Clear all filters

151184-Thumbnail Image.png
Description
Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved

Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because interlineage matings within each pair are the sole source of hybrid F1 workers; these workers build and sustain the colonies, facilitating the production of the reproductive caste, which results solely from intralineage fertilizations. This system of genetic caste determination (GCD) maintains genetic isolation among these closely related lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. Previous studies have also demonstrated that three of the four lineages displaying this unique genetic caste determination phenotype are of hybrid origin. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies' ranges in the U.S. and Mexico, I employed several methods of phylogenetic and DNA sequence analysis, along with comparisons to geological, biogeographic, and phylogeographic studies throughout the sampled regions. These analyses on Pogonomyrmex harvester ants reveal a complex pattern of vicariance and dispersal that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.
ContributorsMott, Brendon (Author) / Gadau, Juergen (Thesis advisor) / Fewell, Jennifer (Committee member) / Anderson, Kirk (Committee member) / Arizona State University (Publisher)
Created2012
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
155980-Thumbnail Image.png
Description
An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups

An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups formed by primary polygyny have profound effects on the social dynamics and inclusive fitness benefits within a colony. Despite this, the evolution of non-kin queen cooperation has been relatively overlooked in considerations of the evolution of cooperative sociality. To date, studies examining the costs and benefits of primary polygyny have focused primarily on the advantages of multiple queens during colony founding and early growth, but the impact of their presence extends to colony maturity and reproduction.

In this dissertation, I evaluate the ecological drivers and fitness consequences of non-kin queen cooperation, by comparing the reproduction of mature single-queen versus polygynous harvester ant (Pogonomyrmex californicus) colonies in the field. I captured and quantified the total number and biomass of reproductives across multiple mating seasons, comparing between populations that vary in the proportion of single queen versus polygynous colonies, to assess the fitness outcomes of queen cooperation. Colonies in a mainly polygynous site had lower reproductive investment than those in sites with predominantly single-queen colonies. The site dominated by polygyny had higher colony density and displayed evidence of resource limitation, pressures that may drive the evolution of queen cooperation.

I also used microsatellite markers to examine how polygynous queens share worker and reproductive production with nest-mate queens. The majority of queens fairly contribute to worker production and equally share reproductive output. However, there is a low frequency of queens that under-produce workers and over-produce reproductive offspring. This suggests that cheating by reproducing queens is possible, but uncommon. Competitive pressure from neighboring colonies could reduce the success of colonies that contain cheaters and maintain a low frequency of this phenotype in the population.
ContributorsHaney, Brian R (Author) / Fewell, Jennifer H (Thesis advisor) / Cole, Blaine J. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Rutowski, Ron L (Committee member) / Arizona State University (Publisher)
Created2017
154580-Thumbnail Image.png
Description
The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika

The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika populations. Another point of view is that pikas are a keystone species and an ecosystem engineer in the grassland ecosystem of the QTP. The pika eradication program raises a difficult ethical and religious dilemma for local pastoralists, and is criticized for not being supported by scientific evidence. Complex interactions between pikas, livestock, and habitat condition are poorly understood. My dissertation research examines underpinning justifications of the pika poisoning program leading to these controversies. I investigated responses of pikas to habitat conditions with field experimental manipulations, and mechanisms of pika population recovery following pika removal. I present policy recommendations based on an environmental ethics framework and findings from the field experiments. After five years of a livestock grazing exclusion experiment and four years of pika monitoring, I found that grazing exclusion resulted in a decline of pika habitat use, which suggests that habitat conditions determine pika population density. I also found that pikas recolonized vacant burrow systems following removal of residents, but that distances travelled by dispersing pikas were extremely short (~50 m). Thus, current pika eradication programs, if allowed to continue, could potentially compromise local populations as well as biodiversity conservation on the QTP. Lethal management of pikas is a narrowly anthropocentric-based form of ecosystem management that has excluded value-pluralism, such as consideration of the intrinsic value of species and the important ecological role played by pikas. These conflicting approaches have led to controversies and policy gridlock. In response, I suggest that the on-going large-scale pika eradication program needs reconsideration. Moderation of stocking rates is required in degraded pika habitats, and Integrated Pest Management may be required when high stocking rate and high pika density coexist. A moderate level of livestock and pika density can be consistent with maintaining the integrity and sustainability of the QTP alpine steppe ecosystem.
ContributorsBadingqiuying (Author) / Smith, Andrew T. (Thesis advisor) / Wu, Jianguo (Committee member) / Minteer, Ben (Committee member) / Anderies, John (Committee member) / Harris, Richard B. (Committee member) / Arizona State University (Publisher)
Created2016