Matching Items (16)
Filtering by

Clear all filters

152261-Thumbnail Image.png
Description
Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid

Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid land soils, these microbial communities and factors are not well understood. I aimed to study the role of N cycling microbes, such as the ammonia-oxidizing bacteria (AOB), the recently discovered ammonia-oxidizing archaea (AOA), and various fungal groups, in soils of arid lands. I also tested if niche differentiation among microbial populations is a driver of differential biogeochemical outcomes. I found that N cycling microbial communities in arid lands are structured by environmental factors to a stronger degree than what is generally observed in mesic systems. For example, in biological soil crusts, temperature selected for AOA in warmer deserts and for AOB in colder deserts. Land-use change also affects niche differentiation, with fungi being the major agents of N2O production in natural arid lands, whereas emissions could be attributed to bacteria in mesic urban lawns. By contrast, NO3- production in the native desert and managed soils was mainly controlled by autotrophic microbes (i.e., AOB and AOA) rather than by heterotrophic fungi. I could also determine that AOA surprisingly responded positively to inorganic N availability in both short (one month) and long-term (seven years) experimental manipulations in an arid land soil, while environmental N enrichment in other ecosystem types is known to favor AOB over AOA. This work improves our predictions of ecosystem response to anthropogenic N increase and shows that paradigms derived from mesic systems are not always applicable to arid lands. My dissertation also highlights the unique ecology of ammonia oxidizers and draws attention to the importance of N cycling in desert soils.
ContributorsMarusenko, Yevgeniy (Author) / Hall, Sharon J (Thesis advisor) / Garcia-Pichel, Ferran (Thesis advisor) / Mclain, Jean E (Committee member) / Schwartz, Egbert (Committee member) / Arizona State University (Publisher)
Created2013
151999-Thumbnail Image.png
Description
Concerted efforts have been made within teacher preparation programs to integrate teaching with technology into the curriculum. Unfortunately, these efforts continue to fall short as teachers' application of educational technology is unsophisticated and not well integrated. The most prevalent approaches to integrating technology tend to ignore pedagogy and content and

Concerted efforts have been made within teacher preparation programs to integrate teaching with technology into the curriculum. Unfortunately, these efforts continue to fall short as teachers' application of educational technology is unsophisticated and not well integrated. The most prevalent approaches to integrating technology tend to ignore pedagogy and content and assume that the technology integration knowledge for all contexts is the same. One theoretical framework that does acknowledge content, pedagogy, and context in conjunction with technology is Technological Pedagogical Content Knowledge (TPACK) and was the lens through which teacher development was measured and interpreted in this study. The purpose of this study was to investigate graduate teacher education students' knowledge and practice of teaching with technology as well as how that knowledge and practice changes after participation in an educational technology course. This study used a mixed-methods sequential explanatory research design in which both quantitative and qualitative data were gathered from 82 participants. TPACK pre- and postcourse surveys were administered to a treatment group enrolled in an educational technology course and to a nonequivalent control group enrolled in a learning theories course. Additionally, pre- and postcourse lesson plans were collected from the treatment group. Select treatment group participants also participated in phone interviews. Analyses compared pre- and post-course survey response differences within and between the treatment and control groups. Pre- and postlesson plan rubric score differences were compared within the treatment group. Quantitative text analyses were performed on the collected lesson plans. Open and axial coding procedures were followed to analyze interview transcripts. The results of the study revealed five significant findings: 1) graduate students entering an educational technology course reported lower ability in constructs related to teaching with technology than in constructs related to teaching in a traditional setting; 2) TPACK was malleable and TPACK instruments were sensitive to that malleability; 3) significant gains in reported and demonstrated TPACK constructs were found after participating in an educational technology course; 4) TPACK construct ability levels vary significantly by participant characteristics; and 5) influences on teaching knowledge and practice range from internet resources, to mentor teachers, and to standardized curriculum packages.
ContributorsSabo, Kent (Author) / Atkinson, Robert (Thesis advisor) / Archambault, Leanna (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
149563-Thumbnail Image.png
Description
This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix

This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix basin along Cave Creek (CC). Soil properties, annual herbaceous biomass and the physical properties of alignments and surface soils were measured and compared across the landscape, specifically on: 1) agricultural rock alignments that were near the archaeological site 2) geologically formed rock alignments that were located 0.5-1 km away from settlements; and 3) areas both near and far from settlements where rock alignments were absent. At AFNM, relatively well-built rock alignments have altered soil properties and processes while less-intact alignments at CC have left few legacies.
ContributorsTrujillo, Jolene Eve (Author) / Hall, Sharon J (Thesis advisor) / Collins, Scott L. (Committee member) / Spielmann, Katherine A. (Committee member) / Arizona State University (Publisher)
Created2011
149430-Thumbnail Image.png
Description
As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge

As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge groundwater and riparian vegetation to prosper along canal banks. As there is growing interest in managing landscapes for multiple ecosystem services, this study was undertaken to determine if irrigation canals function as an extension of the riparian corridor. I was specifically interested in determining if the processes within semi-arid streams that drive riparian plant community structure are manifested in earthen irrigation ditches. I examined herbaceous and woody vegetation along the middle Verde River, AZ, USA and three adjacent irrigation ditches across six months. I also collected sieved hydrochores--seeds dispersing through water--within ditches and the river twelve times. Results indicate that ditch vegetation was similar to streamside river vegetation in abundance (cover and basal area) due to surface water availability but more diverse than river streamside vegetation due to high heterogeneity. Compositionally, herbaceous vegetation along the ditch was most similar to the river banks, while low disturbance fostered woody vegetation along the ditches similar to high floodplain and river terrace vegetation. Hydrochore richness and abundance within the river was dependent on seasonality and stream discharge, but these relationships were dampened in the ditches. Species-specific strategies of hydrochory, however, did emerge in both systems. Strategies include pulse species, which disperse via hydrochory in strict accordance with their restricted dispersal windows, constant species, which are year round hydrochores, and combination species, which show characteristics of both. There was high overlap in the composition of hydrochores in the two systems, with obligate wetland species abundant in both. Upland species were more seasonally constant and abundant in the ditch water than the river. The consistency of river processes and similarity of vegetation suggest that earthen irrigation ditches do function as an extension of the riparian corridor. Thus, these man-made irrigation ditches should be considered by stakeholders for their multiple ecosystem services.
ContributorsBetsch, Jacqueline Michelle (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon J (Committee member) / Merritt, David M. (Committee member) / Arizona State University (Publisher)
Created2010
171536-Thumbnail Image.png
Description
More people live in cities or metropolitan areas than ever before, which encompass many types of urbanization. These areas are culturally diverse and densely populated heterogeneous landscapes that are shaped by socio-ecological patterns. Cities support human and wildlife populations that are influenced indirectly and directly by human decisions. This process

More people live in cities or metropolitan areas than ever before, which encompass many types of urbanization. These areas are culturally diverse and densely populated heterogeneous landscapes that are shaped by socio-ecological patterns. Cities support human and wildlife populations that are influenced indirectly and directly by human decisions. This process can result in unequal access to environmental services and accessible green spaces. Additionally, biodiversity distribution is influenced by human decisions. Although neighborhood income can drive biodiversity in metropolitan areas (i.e., the ‘luxury effect’), other socio-cultural factors may also influence the presence and abundance of wildlife beyond simple measures of wealth. To understand how additional social factors shape distributions of wildlife, I ask, are patterns of wildlife distribution associated with neighborhood ethnicity, in addition to income and ecological landscape characteristics within metropolitan areas? Utilizing data from 38 wildlife cameras deployed in neighborhood public parks and non-built spaces in metro Phoenix, AZ (USA), I estimated occupancy and activity patterns of coyotes (Canis latrans), desert cottontail rabbits (Sylvilagus audubonii), and domestic cats (Felis catus) across gradients of median household income and neighborhood ethnicity, estimated by the proportion of Latinx residents. Neighborhood ethnicity appeared in the top models for all species, and neighborhood % of Latinx residents was inversely associated with presence of native Sonoran Desert animals (coyotes and cottontail rabbits). Furthermore, daily activity patterns of coyotes differed in neighborhoods with higher vs. lower proportion of Latinx residents. My results suggest that socio-cultural variables beyond income are associated with wildlife distributions, and that factors associated with neighborhood ethnicity may be an informative correlate of city-wide ecological patterns. In this research, I unraveled predictive social variables and differentiated wildlife distribution across neighborhood gradients of income and ethnic composition, bringing attention to the potentially unequal distribution of mammals in cities.
ContributorsCocroft, Alexandreana (Author) / Hall, Sharon J (Thesis advisor) / Lerman, Susannah B (Committee member) / Lewis, Jesse (Committee member) / Arizona State University (Publisher)
Created2022
189248-Thumbnail Image.png
Description
With a growing majority of humans living within cities and towns, urbanization is one of the most persistent drivers of change in global land use and challenges to sustainability and biodiversity conservation. The development of cities and towns can substantially shape local and regional environments in which wildlife communities persist.

With a growing majority of humans living within cities and towns, urbanization is one of the most persistent drivers of change in global land use and challenges to sustainability and biodiversity conservation. The development of cities and towns can substantially shape local and regional environments in which wildlife communities persist. Although urbanization can negatively affect wildlife communities – through processes such as habitat fragmentation and non-native species introduction – cities can also provide resources to wildlife, such as through food, water, and space, creating potential opportunities for conservation. However, managing wildlife communities persisting in urbanizing landscapes requires better understanding of how urbanized landscapes influence the ability of wildlife to coexist with one another and with people at local and regional scales. In this dissertation, I addressed these research needs by evaluating the environmental and human factors driving dynamic wildlife community distributions and people’s attitudes towards wildlife. In my first two chapters,I used wildlife camera data collected from across the Phoenix Metropolitan Area, AZ to examine seasonal patterns of wildlife space use, species richness, and interspecific interactions across levels of urbanization with varying landscape characteristics, including plant productivity and spatial land use heterogeneity. Here I found that urbanization was a primary driver of wildlife community characteristics within the region, but that seasonal resource availability and landscape heterogeneity could have mediating influences that require further exploration. In my third chapter, I partnered with wildlife researchers across North America to examine how relationships between urbanization and community composition vary among cities with distinct social-ecological characteristics, finding that effects of local urbanization were more negative in warmer, less vegetated, and more urbanized cities. In my fourth and final chapter, I explored the potential for human-wildlife coexistence by examining how various ideological, environmental, and sociodemographic factors influenced Phoenix area residents’ level of comfort living near different wildlife groups. Although I found that residents’ attitudes were primarily shaped by their relatively static wildlife values, comfort living near wildlife also depended on the characteristics of the neighboring environment, of the residents, and of the wildlife involved, indicating the potential for facilitating conditions for human-wildlife coexistence. Altogether, the findings of this dissertation suggest that the management of wildlife and their interactions with people within cities would benefit from more proactive and holistic consideration of the interacting environmental, wildlife, and human characteristics that influence the persistence of biodiversity within an increasingly urbanized world.
ContributorsHaight, Jeffrey Douglas (Author) / Hall, Sharon J (Thesis advisor) / Lewis, Jesse S (Thesis advisor) / Larson, Kelli L (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2023
157146-Thumbnail Image.png
Description
There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at

There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at radical change in the engineering education system. This exploratory research sought to better understand ways of thinking to address complex educational challenges, specifically, in the context of engineering-social sciences collaborations. The mixed methods inquiry drew on the ways of thinking perspectives from sustainability education to adapt futures, values, systems, and strategic thinking to the context of EER. Using the adapted framework, nine engineer-social scientist dyads were interviewed to empirically understand conceptualizations and applications of futures, values, systems, and strategic thinking. The qualitative results informed an original survey instrument, which was distributed to a sample of 310 researchers nationwide. Valid responses (n = 111) were analyzed to uncover the number and nature of factors underlying the scales of futures, values, systems, and strategic thinking. Findings illustrate the correlated, multidimensional nature of ways of thinking. Results from the qualitative and quantitative phases were also analyzed together to make recommendations for policy, teaching, research, and future collaborations. The current research suggested that ways of thinking, while perceived as a concept in theory, can and should be used in practice. Futures, values, systems, and strategic thinking, when used in conjunction could be an important tool for researchers to frame decisions regarding engineering education problem/solution constellations.
ContributorsDalal, Medha (Author) / Archambault, Leanna M (Thesis advisor) / Carberry, Adam (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2019
153844-Thumbnail Image.png
Description
As a result of growing populations and uncertain resource availability, urban areas are facing pressure from federal and state agencies, as well as residents, to promote conservation programs that provide services for people and mitigate environmental harm. Current strategies in US cities aim to reduce the impact of municipal and

As a result of growing populations and uncertain resource availability, urban areas are facing pressure from federal and state agencies, as well as residents, to promote conservation programs that provide services for people and mitigate environmental harm. Current strategies in US cities aim to reduce the impact of municipal and household resource use, including programs to promote water conservation. One common conservation program incentivizes the replacement of water-intensive turfgrass lawns with landscapes that use less water consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). A handful of previous studies in experimental landscapes have shown that converting a turfgrass yard to a shrub-dominated landscape has the potential to increase rates of nitrate (NO3-) leaching. However, no studies have examined the drivers or patterns across diverse management practices. In this research, I compared soil nutrient retention and cycling in turfgrass and lawn-alternative xeriscaped yards along a chronosequence of time since land cover change in Tempe, Arizona, in the semi-arid US Southwest. Soil inorganic extractable nitrogen (N) pools were greater in xeriscapes compared to turfgrass lawns. On average xeriscapes contained 2.5±0.4 g NO3--N/m2 in the first 45 cm of soil, compared to 0.6±0.7 g NO3--N/m2 in lawns. Soil NO3--N pools in xeriscaped yards also varied significantly with time: pools were largest 9-13 years after cover change and declined to levels comparable to turfgrass at 18-21 years. Variation in soil extractable NO3--N with landscape age was strongly influenced by management practices that control soil water availability, including shrub cover, the presence of sub-surface plastic sheeting, and the frequency of irrigation. This research is the first to explore the ecological outcomes and temporal dynamics of an increasingly common, ‘sustainable’ land use practice that is universally promoted in US cities. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of NO3--N that may be lost from the soil rooting zone over time, through leaching following irrigation or rainfall. These results have implications for best management practices to optimize the benefits of water-conserving residential yards.
ContributorsHeavenrich, Hannah (Author) / Hall, Sharon J (Thesis advisor) / Larson, Kelli L (Committee member) / Potaki, Diane E (Committee member) / Arizona State University (Publisher)
Created2015
153405-Thumbnail Image.png
Description
Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle:

Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle: The Maximum Power Principle (MPP). The MPP posits that ecosystems, and in fact all energy systems, develop to maximize power production or the rate of energy production. I conducted theoretical and empirical investigations to test the MPP in northern wetlands.

Permafrost degradation is leading to rapid wetland formation in northern peatland ecosystems, altering the role of these ecosystems in the global carbon cycle. I reviewed the literature on the history of the MPP theory, including tracing its origins to The Second Law of Thermodynamics. To empirically test the MPP, I collected soils along a gradient of ecosystem development and: 1) quantified the rate of adenosine triphosphate (ATP) production--literally cellular energy--to test the MPP; 2) quantified greenhouse gas production (CO2, CH4, and N2O) and microbial genes that produce enzymes catalyzing greenhouse gas production, and; 3) sequenced the 16s rRNA gene from soil microbes to investigate microbial community composition across the chronosequence of wetland development. My results suggested that the MPP and other related theoretical constructs have strong potential to further inform our understanding of ecosystem development. Soil system power (ATP) decreased temporarily as the ecosystem reorganized after disturbance to rates of power production that approached pre-disturbance levels. Rates of CH4 and N2O production were higher at the newly formed bog and microbial genes involved with greenhouse gas production were strongly related to the amount of greenhouse gas produced. DNA sequencing results showed that across the chronosequence of development, the two relatively mature ecosystems--the peatland forest ecosystem prior to permafrost degradation and the oldest bog--were more similar to one another than to the intermediate, less mature bog. Collectively, my results suggest that ecosystem age, rather than ecosystem state, was a more important driver for ecosystem structure and function.
ContributorsChapman, Eric (Author) / Childers, Daniel L. (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Hall, Sharon J (Committee member) / Turetsky, Merritt (Committee member) / Arizona State University (Publisher)
Created2015
152972-Thumbnail Image.png
Description

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used highly managed residential yards, which compose nearly half of the heterogeneous urban land area, as a model system to examine the ecological effects of people's management choices and the social drivers of those decisions. I found that a complex set of individual and institutional social characteristics drives people's decisions, which in turn affect ecological structure and function across scales from yards to cities. This work demonstrates the link between individuals' decision-making and ecosystem service provisioning in highly managed urban ecosystems.

Second, I examined the distribution of urban-generated air pollutants and their complex ecological outcomes in protected native ecosystems. Atmospheric carbon dioxide (CO2), reactive nitrogen (N), and ozone (O3) are elevated near human activities and act as both resources and stressors to primary producers, but little is known about their co-occurring distribution or combined impacts on ecosystems. I investigated the urban "ecological airshed," including the spatial and temporal extent of N deposition, as well as CO2 and O3 concentrations in native preserves in Phoenix, Arizona and the outlying Sonoran Desert. I found elevated concentrations of ecologically relevant pollutants co-occur in both urban and remote native lands at levels that are likely to affect ecosystem structure and function. Finally, I tested the combined effects of CO2, N, and O3 on the dominant native and non-native herbaceous desert species in a multi-factor dose-response greenhouse experiment. Under current and predicted future air quality conditions, the non-native species (Schismus arabicus) had net positive growth despite physiological stress under high O3 concentrations. In contrast, the native species (Pectocarya recurvata) was more sensitive to O3 and, unlike the non-native species, did not benefit from the protective role of CO2. These results highlight the vulnerability of native ecosystems to current and future air pollution over the long term. Together, my research provides empirical evidence for future policies addressing multiple stressors in urban managed and native landscapes.

ContributorsMiessner Cook, Elizabeth (Author) / Hall, Sharon J (Thesis advisor) / Boone, Christopher G (Committee member) / Collins, Scott L. (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2014