Matching Items (31)
Filtering by

Clear all filters

153912-Thumbnail Image.png
Description
Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies

Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies whose host plants are present) and comparing them to these same effects on plants and relevant subsets of plants (such as butterfly nectar plants and larval host plants) provided insight into pollinator and riparian conservation and restoration.

I surveyed four Sonoran desert stream sites, and found significant relationships between flow permanence and plant and butterfly species richness and abundance, as well as strong relationships between plant and butterfly abundance and between plant and butterfly species richness. Most notably, my results pointed to hosted butterflies as a break-out category of butterflies which may more clearly delineate ecological relationships between butterfly and plant abundance and diversity along Sonoran Desert streams; this can inform conservation decisions. Managing for hosted (resident) butterflies will necessarily entail managing for the presence of surface water, nectar forage, varying levels of canopy cover, and plant, nectar plant, and host plant diversity since the relationships between hosted butterfly species richness and/or abundance and all of these variables were significant, both statistically and ecologically.
ContributorsButler, Lane (Author) / Stromberg, Juliet C. (Thesis advisor) / Makings, Elizabeth (Committee member) / Pearson, David L (Committee member) / Boggess, May (Committee member) / Buchmann, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153990-Thumbnail Image.png
Description
The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history,

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history, however current regional water use is predicted to diminish streamflow over the next century. Prior to this project, no floristic inventory had been conducted along any section of the Verde. The purpose of this study was to develop a Flora of the Upper Verde River, with the goals of documenting rare and endemic species, the composition and abundance of wetland plants, and the factors shaping plant diversity in the region.

I made a total of 1856 collections and reviewed past collections to produce a checklist of 729 vascular plant taxa in 403 genera and 98 families. The most species-rich family is the Poaceae, followed by Asteraceae and Fabaceae. The flora includes 159 wetland taxa, 47 endemics, and 26 taxa of conservation concern, eight of which are Federally listed. Several new populations were found in these categories and of rarely-collected taxa including one state record, three county records and several range extensions. I report on the local status of several endemics, wetland taxa with limited distributions, and relict populations of a tepary bean (Phaseolus acutifolius) that were likely transported to the region and cultivated by pre-Columbian cultures. I categorize thirteen distinct plant communities, the most abundant being Pinyon/Juniper Woodland, Chihuahuan/Apacherian Scrub, and Riparian Deciduous Forest.

Four primary factors influence floristic diversity of the Upper Verde region: 1) a location at the junction of three physiographic and floristic provinces—represented by co-occurrence of species with affinities to the Sonoran, Intermountain and Madrean regions, 2) geologic diversity—as distinct groups of species are associated with particular geologic types, 3) topographic and habitat complexity—allowing species adapted to disparate environments to co-occur, and 4) human introductions—since over 15% of the flora is composed of introduced species from Eurasia and several taxa were introduced to the region and cultivated by pre-Columbian cultures.
ContributorsCoburn, Francis S (Author) / Stromberg, Juliet C. (Thesis advisor) / Landrum, Leslie R (Thesis advisor) / Makings, Elizabeth (Committee member) / Fertig, Walter F (Committee member) / Arizona State University (Publisher)
Created2015
156911-Thumbnail Image.png
Description
Baseline community composition data provides a snapshot in time that allows changes in composition to be monitored more effectively and can inform best practices. This study examines Arizona Upland plant community composition of the Sonoran Desert through three different lenses: floristic inventory, and fire and reseeding effects.

A floristic inventory was

Baseline community composition data provides a snapshot in time that allows changes in composition to be monitored more effectively and can inform best practices. This study examines Arizona Upland plant community composition of the Sonoran Desert through three different lenses: floristic inventory, and fire and reseeding effects.

A floristic inventory was conducted at Cave Creek Regional Park (CCRP), Maricopa County, AZ. One hundred fifty-four taxa were documented within Park boundaries, including 148 species and six infraspecific taxa in 43 families. Asteraceae, Boraginaceae, and Fabaceae accounted for 40% of documented species and annuals accounted for 56% of documented diversity.

Fire effects were studied at three locations within McDowell Sonoran Preserve (MSP), Scottsdale, AZ. These fires occurred throughout the 1990s and recovered naturally. Fire and reseeding effects were studied at the site of a 2005 fire within CCRP that was reseeded immediately following the fire.

Two questions underlie the study regarding fire and reseeding effects: 1) How did fire and reseeding affect the cover and diversity of the plant communities? 2) Is there a difference in distribution of cover between treatments for individual species or growth habits? To address these questions, I compared burned and adjacent unburned treatments at each site, with an additional reseeded treatment added at CCRP.

MSP sites revealed overall diversity and cover was similar between treatments, but succulent cover was significantly reduced, and subshrub cover was significantly greater in the burn treatment. Seventeen species showed significant difference in distribution of cover between treatments.

The CCRP reseeded site revealed 11 of 28 species used in the seed mix persist 12 years post-fire. The reseeded treatment showed greater overall diversity than burned and unburned treatments. Succulent and shrub cover were significantly reduced by fire while subshrub cover was significantly greater in the reseeded treatment. Sixteen species showed significant difference in distribution of cover between treatments.

Fire appears to impact plant community composition across Arizona Upland sites. Choosing species to include in seed mixes for post-fire reseeding, based on knowledge of pre-fire species composition and individual species’ fire responses, may be a useful tool to promote post-fire plant community recovery.
ContributorsBarron, Kara Lynn (Author) / Pigg, Kathleen B (Thesis advisor) / Stromberg, Juliet (Thesis advisor) / Makings, Elizabeth (Committee member) / McCue, Kimberlie (Committee member) / Arizona State University (Publisher)
Created2018
136641-Thumbnail Image.png
Description
This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as

This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as well as contemporary fire policy, a history of wildfire in Arizona, and two recent fires in Sedona, AZ. The two fires in Sedona, the Brins Fire of 2006 and the Slide Fire of 2014, act as a focal point for this ecological management transition, as even within an 8-year period, we can see the different ways the two fires were managed and the transition to a greater ecological importance in management strategies. These all came together to give a full spectrum for the factors that have led to more ecologically-prominent wildfire management strategies in Arizona.
ContributorsGeorge-Sills, Dylan (Author) / Pyne, Stephen (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2015-05
136299-Thumbnail Image.png
Description
Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing

Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing evaporation from soil, but at higher densities, surface rocks may also have a negative impact on water availability by limiting water infiltration or light availability. However, the direct relationship between rock cover and aboveground net primary productivity (ANPP), a proxy for NPP, is not well understood. In this research we explore the relationship between rock cover, ANPP, and soil nutrient availability. We conducted a rock cover survey on long-term fertilized plots at fifteen sites in the Sonoran Desert and used 4 years of data from annual plant biomass surveys to determine the relationship between peak plant biomass and surface rock cover. We performed factorial ANCOVA to assess the relationship among annual plant biomass, surface rocks, precipitation, and fertilization treatment. Overall we found that precipitation, nutrients, and rock cover influence growth of Sonoran Desert annual plants. Rock cover had an overall negative relationship with annual plant biomass, but did not show a consistent pattern of significance over four years of study and with varying average winter precipitation.
ContributorsShaw, Julea Anne (Author) / Hall, Sharon (Thesis director) / Sala, Osvaldo (Committee member) / Cook, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133966-Thumbnail Image.png
Description
In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our

In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our society do not command the scientific literacy necessary to address important societal issues and concerns" (NCES 2012, p.11). Additionally, far too many people are incapable of thinking long term and understanding how their actions affect others. Because of this shortsightedness our world is facing one of its biggest ecological crises \u2014 global warming confounded by overpopulation and overconsumption. Now, more than ever, it is critical "for our young people to have a basic understanding of the relevant scientific ideas, technologies and ethical issues and powers of reasoning, to be prepared to face these issues" (Harlen et al., 2015). I believe that investigating innovative ways to teach ecology could be an important step to accomplishing this. Learning to think like a scientist forces people to rely on facts, follow similar protocols to deduce these facts, and be able to think critically about misleading events. More specifically, ecology education will allow people to develop those skills while also learning about team work, open-mindedness, and their environment. Ecology is defined as "the branch of biology that deals with the relations of organisms to one another and to their physical surroundings" (Dictionary.com, 2018). It is clear that this subcategory of science could act as a powerful introduction to the scientific world and how we relate to it. Its introduction at a young age has the potential to create a generation of conscientious and curious lifelong learners. In an attempt to support effective ways to teach ecology, I developed an educational unit and applied it in different educational contexts. My target audience was elementary aged students and I tested this unit with children in Phoenix Metropolitan Area afterschool programs. I taught core concepts of ecology \u2014 the water cycle, the sun's energy, plants and photosynthesis, and food webs \u2014in a sequence of lesson plans that build upon each other. Finally, I determined the appropriate age group and setting for these lesson plans through research and in-class observations. In this document, I explain the process I went through in developing my lesson plans, why I felt compelled to make them, and my experiences in implementing them.
ContributorsVotaw, Alexandra Lindsay (Author) / Larson, Kelli (Thesis director) / Herrmann, Lisa (Committee member) / York, Abigail (Committee member) / School of Art (Contributor) / The Design School (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133650-Thumbnail Image.png
Description
Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while

Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while simultaneously producing almost 40% of the globally emitted methane (Schmidt et al., 2016), making peatlands an important component of the carbon budgets. Published research indicates that the efficiency of carbon usage among microbial communities can determine the soil-carbon response to rising temperatures (Allison et al. 2010). By determining carbon consumption in peatland soils, total community respiration response, and community structure change with additions, models of carbon use efficiency in permafrost peatlands will be well-informed and have a better understanding of how the peatlands will respond to, and utilize, increased availability of carbon compounds due to the melting permafrost. To do this, we will sequence Lutose deep core samples to observe baseline microbial community structure at different depths and different age-gradients, construct substrate incubations of glucose and propionate and observe community respiration response via a gas chromatography flame ionization detector, track the glucose and propionate additions with high-performance liquid chromatography (HPLC), and sequence the samples once more to determine if there was a deviation from the initial community structure obtained prior to the incubations. We found that our initial sequencing data was supported by previous work (Lin et al., 2014), however we were unable to sequence samples post-incubation due to time constraints. In this sequencing analysis we found that the strongest variable that made samples biologically similar was the age-gradient site in which they were extracted. We found that the group with glucose additions produced the most carbon dioxide compared with the other treatments, but was not the treatment that dominated the production of methane. Finally, in the HPLC samples that were analyzed, we found that glucose is likely forming the most by-product accumulation from mass balance calculations, while propionate is likely forming the least. Future experimentation should focus on the shortcomings of this experiment. Further analysis of 16S rRNA sequencing data from after the incubations should be analyzed to determine the change in microbial community structure throughout the experiment. Furthermore, HPLC analysis for the several samples need to be done and followed up with mass balance to determine where the added glucose and propionate are being allocated within the soil. Once these pieces of the puzzle are put into place, our original question of how the microbial community structure changes at different depths and age-gradients within permafrost peatlands will be conclusively answered.
ContributorsFrese, Alexander Nicholas (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / van Paassen, Leon (Committee member) / Sarno, Analissa (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137211-Thumbnail Image.png
Description
Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range

Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range of plant and animal species in both continuous and episodic fashions. This study aimed to gain a better understanding of the relationship between streamflow permanence and patterns of biomass and secondary production of the riparian fauna these ecosystems support. This was accomplished through a yearlong survey in the Huachuca Mountains of Southeastern, Arizona where macroinvertebrates were collected at various sites along a gradient of streamflow permanence before, during, and after the three month monsoon season that supplies most of the annual rainfall in this region. The results of my surveys indicate that 1) Sites characterized by low streamflow permanence were more responsive to changes in precipitation than sites characterized by relatively high streamflow permanence 2) In ephemeral streams, there is a significant peak in terrestrial macroinvertebrate production and biomass both during and after the monsoon season 3) streamflow permanence may convey consistent but not exceptional secondary production whereas seasonality in rainfall may convey exceptional but episodic secondary production—more so in sites where streamflow is not consistent.
ContributorsMcCartin, Michael Patrick (Author) / Sabo, John (Thesis director) / Stromberg, Juliet (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
154370-Thumbnail Image.png
Description
It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than

It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than 0.1% of the landscape. This investigation assesses the distribution of vascular plant species within and among ciénegas and address linkages between environmental factors and wetland plant communities. Specifically, I ask: 1) What is the range of variability among ciénegas, with respect to wetland area, soil organic matter, plant species richness, and species composition? 2) How is plant species richness influenced locally by soil moisture, soil salinity, and canopy cover, and regionally by elevation, flow gradient (percent slope), and temporally by season? And 3) Within ciénegas, how do soil moisture, soil salinity, and canopy cover influence plant species community composition? To answer these questions I measured environmental variables and quantified vegetation at six cienegas within the Santa Cruz Watershed in southern Arizona over one spring and two post-monsoon periods. Ciénegas are highly variable with respect to wetland area, soil organic matter, plant species richness, and species composition. Therefore, it is important to conserve the ciénega landscape as opposed to conserving a single ciénega. Plant species richness is influenced negatively by soil moisture, positively by soil salinity, elevation, and flow gradient (percent slope), and is greater during the post-monsoon season. Despite concerns about woody plant encroachment reducing biodiversity, my investigation suggests canopy cover has no significant influence on ciénega species richness. Plant species community composition is structured by water availability at all ciénegas, which is consistent with the key role water availability plays in arid and semiarid regions. Effects of canopy and salinity structuring community composition are site specific. My investigation has laid the groundwork for ciénega conservation by providing baseline information of the ecology of these unique and threatened systems. The high variability of ciénega wetlands and the rare species they harbor combined with the numerous threats against them and their isolated occurrences makes these vanishing communities high priority for conservation.
ContributorsWolkis, Dustin (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon (Committee member) / Salywon, Andrew (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016