Matching Items (3)
Filtering by

Clear all filters

156373-Thumbnail Image.png
Description
Public mass shootings occur at a rate in the U.S. that is higher than any other developed country. These event initiate wide spread media attention. The media attention these events achieve have shown to impact the public behavior (e.g., increased firearm sales). However, the impact public mass shootings have on

Public mass shootings occur at a rate in the U.S. that is higher than any other developed country. These event initiate wide spread media attention. The media attention these events achieve have shown to impact the public behavior (e.g., increased firearm sales). However, the impact public mass shootings have on firearm storage and carry habits of the public is not well understood. Using data collected from the Transportation Security Administration, this study examines how mass shootings have led to moral panics occurring within the U.S. through the examination of the firearm carrying habits among the population immediately following mass shootings. The results indicate that loaded firearms with rounds in the chamber detected by the TSA have significantly increased since 2012. Further, firearms detected immediately following a public mass shooting had a higher proportion of firearms loaded with a round in the chamber relative to 7 days prior to the shooting. Moreover, the increase in proportions of firearms found loaded with a round in the chamber exponentially decays as days past the initial shooting, these events occur at a higher rate than the decay rate can normalize these occurrences. I conclude that in the wake of these shootings a moral panic ensues that is partially responsible for the change in the general public’s arming configuration habits. Further research is needed in to determine the impact on crime, and public health related issues due to this change in the public’s firearm carrying habits.
ContributorsCordova, Richard Donald (Author) / Reisig, Michael (Thesis advisor) / Towers, Sherry (Committee member) / Wang, Xia (Committee member) / Holtfreter, Kristy (Committee member) / Arizona State University (Publisher)
Created2018
154271-Thumbnail Image.png
Description
The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?

This thesis looks first at the impact that limited access to vaccine

The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?

This thesis looks first at the impact that limited access to vaccine stockpiles may have on a single influenza outbreak. The purpose is to highlight the challenges faced by populations embedded in inadequate health systems and to identify and assess ways of ameliorating the impact of resource limitations on public health policy.

Age-specific per capita constraint rates play an important role on the dynamics of communicable diseases and, influenza is, of course, no exception. Yet the challenges associated with estimating age-specific contact rates have not been decisively met. And so, this thesis attempts to connect contact theory with age-specific contact data in the context of influenza outbreaks in practical ways. In mathematical epidemiology, proportionate mixing is used as the preferred theoretical mixing structure and so, the frame of discussion of this dissertation follows this specific theoretical framework. The questions that drive this dissertation, in the context of influenza dynamics, proportionate mixing, and control, are:

I. What is the role of age-aggregation on the dynamics of a single outbreak? Or simply speaking, does the number and length of the age-classes used to model a population make a significant difference on quantitative predictions?

II. What would the age-specific optimal influenza vaccination policies be? Or, what are the age-specific vaccination policies needed to control an outbreak in the presence of limited or unlimited vaccine stockpiles?

Intertwined with the above questions are issues of resilience and uncertainty including, whether or not data collected on mixing (by social scientists) can be used effectively to address both questions in the context of influenza and proportionate mixing. The objective is to provide answers to these questions by assessing the role of aggregation (number and length of age classes) and model robustness (does the aggregation scheme selected makes a difference on influenza dynamics and control) via comparisons between purely data-driven model and proportionate mixing models.
ContributorsMorales, Romarie (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Mubayi, Anuj (Thesis advisor) / Towers, Sherry (Committee member) / Arizona State University (Publisher)
Created2016
190822-Thumbnail Image.png
Description
This research focuses on the intricate dynamical systems of eusocial insects, particularly ants, and honey bees, known for their highly organized colonies and cooperative behaviors. Research on eusocial insects contributes to understanding of animal and social behavior and promises to help agriculture and have huge economic impacts. Collaborating closely with

This research focuses on the intricate dynamical systems of eusocial insects, particularly ants, and honey bees, known for their highly organized colonies and cooperative behaviors. Research on eusocial insects contributes to understanding of animal and social behavior and promises to help agriculture and have huge economic impacts. Collaborating closely with ecologists, I construct diverse mathematical models tailored to different environmental contexts. These models encompass individual stochastic (Agent-based model), Ordinary Differential Equation (ODE), non-autonomous, and Delay Differential Equation (DDE) models, rigorously validated with experimental data and statistical methods. Employing dynamical theory, bifurcation analysis, and numerical simulations, I gain deeper insights into the adaptive behaviors exhibited by these insects at both colony and individual levels. Our investigation addresses pivotal questions: 1) What mechanisms underlie spatial heterogeneity within social insect colonies, influencing the spread of information and pathogens through their intricate social networks?2) How can I develop accurate mathematical models incorporating age structures, particularly for species like honeybees, utilizing delayed differential equations? 3) What is the influence of seasonality on honeybee population dynamics in the presence of parasites, as explored through non-autonomous equations? 4) How do pesticides impact honeybee population dynamics, considering delayed equations and seasonality? Key findings highlight:1) The spatial distribution within colonies significantly shapes contact dynamics, thereby influencing the dissemination of information and the allocation of tasks. 2) Accurate modeling of honeybee populations necessitates the incorporation of age structure, as well as careful consideration of seasonal variations. 3) Seasonal fluctuations in egg-laying rates exert varying effects on the survival of honeybee colonies. 4) Pesticides wield a substantial influence on adult bee mortality rates and the consumption ratios of pollen. This research not only unveils the intricate interplay between intrinsic and environmental factors affecting social insects but also provides broader insights into social behavior and the potential ramifications of climate change.
ContributorsChen, Jun (Author) / Kang, Yun (Thesis advisor) / DeGrandi-Hoffman, Gloria (Committee member) / Fewell, Jeniffer (Committee member) / Harrison, Jon (Committee member) / Towers, Sherry (Committee member) / Arizona State University (Publisher)
Created2023