Matching Items (9)
Filtering by

Clear all filters

151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
153267-Thumbnail Image.png
Description
In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent,

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent, Diorhabda carinulata, and riparian restoration.

During 2013 and 2014, vegetation and herpetofauna were monitored at 21 riparian locations along the Virgin River via trapping and visual encounter surveys. Study sites were divided into four stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence of restoration activities: Tam, Tam-Pros, Tam-Pop/Sal, and Restored Tam-Pop/Sal. Restoration activities consisted of mechanical removal of non-native trees, transplanting native trees, and introduction of water flow. All sites were affected by biological control. I predicted that herpetofauna abundance would vary between stand types and that herpetofauna abundance would be greatest in Restored Tam-Pop/Sal sites due to increased habitat openness and variation following restoration efforts.

Results from trapping indicated that Restored Tam-Pop/Sal sites had three times more total lizard and eight times more Sceloporus uniformis captures than other stand types. Anaxyrus woodhousii abundance was greatest in Tam-Pop/Sal and Restored Tam-Pop/Sal sites. Visual encounter surveys indicated that herpetofauna abundance was greatest in the Restored Tam-Pop/Sal site compared to the adjacent Unrestored Tam-Pop/Sal site. Habitat variables were reduced to six components using a principle component analysis and significant differences were detected among stand types. Restored Tam-Pop/Sal sites were most similar to Tam-Pop/Sal sites. S. uniformis were positively associated with large woody debris and high densities of Populus, Salix, and large diameter Prosopis.

Restored Tam-Pop/Sal sites likely supported higher abundances of herpetofauna, as these areas exhibited greater habitat heterogeneity. Restoration activities created a mosaic habitat by reducing canopy cover and increasing native tree density and surface water. Natural resource managers should consider implementing additional restoration efforts following biological control when attempting to restore riparian areas dominated by Tamarix and other non-native trees.
ContributorsMosher, Kent (Author) / Bateman, Heather L (Thesis advisor) / Stromberg, Juliet C. (Committee member) / Miller, William H. (Committee member) / Arizona State University (Publisher)
Created2014
149766-Thumbnail Image.png
Description
Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses,

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.
ContributorsBanville, Mélanie Josianne (Author) / Bateman, Heather L (Thesis advisor) / Brady, Ward (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
187832-Thumbnail Image.png
Description
Anthropogenic linear infrastructures, including roads, railways, and canals, provide important resources to humans. However, linear infrastructures can reduce landscape connectivity for many wildlife populations. To mitigate these effects, crossing structures and crossing areas can facilitate animal movement across linear infrastructures. Compared to roads, little research has evaluated the factors influencing

Anthropogenic linear infrastructures, including roads, railways, and canals, provide important resources to humans. However, linear infrastructures can reduce landscape connectivity for many wildlife populations. To mitigate these effects, crossing structures and crossing areas can facilitate animal movement across linear infrastructures. Compared to roads, little research has evaluated the factors influencing wildlife use of crossings along major canals. The Central Arizona Project (CAP) canal is a major linear feature in Arizona, and exhibits multiple types of crossing structures and areas. In Chapter 1, the objective was to evaluate the spatial (i.e., landscape features, crossing attributes) and temporal (i.e., season, time of day) factors influencing wildlife use of overpasses (n = 43) and siphons (n = 13) along the CAP canal. Using remote wildlife cameras, 17 species were detected using overpasses and siphons along the CAP canal during one year. Animals exhibited species-specific preferences for landscape features, such as topography and vegetation, and canal crossing types, although many species decreased use of overpasses associated with human development. In Chapter 2, the objective was to evaluate the influence of human activities at overpasses on use by mule deer across multiple analytical scales. Mule deer occupancy and relative habitat use at overpasses decreased in relation to human activity, including recreation. In Chapter 3, the objective was to evaluate seasonal use of underpasses (n = 12) by mammals, reptiles, amphibians, and invertebrates. Using specialized remote wildlife cameras, 30 species were detected using underpasses along the CAP canal across three seasons, and some animals exhibited variable crossing frequencies in relation to the summer monsoon season. Overall in this project, several species of small to large-sized mammals, reptiles, amphibians, and invertebrates used a variety of crossing types, including overpasses and underpasses, along a major canal. Ultimately, this study suggests that to promote landscape connectivity for the wildlife community associated with canals and other types of linear infrastructures, it is important to provide a variety of crossing types that occur across a range of landscape characteristics.
ContributorsHamilton, Kaela M (Author) / Lewis, Jesse S (Thesis advisor) / Bateman, Heather L (Committee member) / Arizona State University (Publisher)
Created2023
187732-Thumbnail Image.png
Description
Environmental variation impacts physiological performance in animals. As a result, many animals thermoregulate to buffer unfavorable thermal variation in their environments. Animals are only expected to thermoregulate when the benefits outweigh the costs, although both are difficult to quantify. I examined how habitats and organismal factors shape thermoregulation and physiological

Environmental variation impacts physiological performance in animals. As a result, many animals thermoregulate to buffer unfavorable thermal variation in their environments. Animals are only expected to thermoregulate when the benefits outweigh the costs, although both are difficult to quantify. I examined how habitats and organismal factors shape thermoregulation and physiological performance in lizards. I found that habitat structure shapes opportunities for thermoregulation in two species of Anolis lizards. In dense tropical rainforests where there is low habitat heterogeneity, the range of available microclimates is narrow. Consequently, lizards in the tropics tend to be thermal specialists – performing best over a narrow range of temperatures. This phenotype should lead to decreased performance under climate warming. I then investigated the relationship between body condition, feeding, and thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) using lab- and field-based experiments. In the lab experiment, when lizards were observed in an artificial thermal gradient, neither body condition nor feeding status influenced the mean body temperature. When simulated costs of thermoregulation were higher, all lizards reduced thermoregulation similarly. However, when lizards were observed in an outdoor thermal arena, individuals with lower body condition decreased thermoregulatory performance, resulting in a lower mean body temperature. Animals with poor body condition may face greater risk of predation when thermoregulating. Finally, I conducted a comparative analysis to quantify relationships between the potential for thermoregulatory performance and empirical measures of productivity (i.e., growth rates and reproductive output) in lizard populations. A model that assumes lizards are active whenever preferred temperatures were available overestimated the duration that a lizard could maintain a preferred body temperature. As such, studies equating predicted thermoregulatory performance with fitness in the context of climate change should be interpreted cautiously. Overall, environmental factors and organismal traits shape the thermoregulatory behavior of animals, ultimately affecting their physiological performance and fitness. Biologists should consider these relationships when modeling the impacts of climate change on future performance.
ContributorsNeel, Lauren (Author) / Angilletta, Michael J (Thesis advisor) / Bateman, Heather L (Committee member) / DeNardo, Dale F (Committee member) / Sears, Michael W (Committee member) / Arizona State University (Publisher)
Created2023
187390-Thumbnail Image.png
Description
The Arizona toad (Anaxyrus microscaphus) is unique among bufonids because they primarily breed in streams of Arizona, New Mexico, Utah, and Nevada. Arizona toad is a species of conservation concern throughout their range. The non-native northern crayfish (Orconectes virilis) are opportunistic omnivores implicated in the declines of other native aquatic

The Arizona toad (Anaxyrus microscaphus) is unique among bufonids because they primarily breed in streams of Arizona, New Mexico, Utah, and Nevada. Arizona toad is a species of conservation concern throughout their range. The non-native northern crayfish (Orconectes virilis) are opportunistic omnivores implicated in the declines of other native aquatic species. I wanted to determine occupancy, habitat use, and species interactions of the Arizona toad throughout its range Visual encounter surveys (VES) were completed by ASU and natural resource agency partners in the summers of 2021 and 2022 (n = 232) throughout Arizona toad range in Arizona. I used VES data and crayfish occurrence records, to determine interactions between the two species. I used broadscale environmental variables (1 km resolution) from WorldClim and EarthEnv to evaluate a relationship with Arizona toad occupancy across transects. These broadscale variables included bioclimatic variables, measures of habitat heterogeneity, measures of solar radiation, and topographic variables. In 2022 I collected fine-scale habitat data evaluating available vegetation cover and substrate composition within paired habitat plots. Fine-scale variables included canopy cover, substrate type, vegetation cover, and water depth. I applied multiple occupancy modeling approaches. Single-species model results found low toad occupancy, but high detection, as this is a rare species. Multi-species results showed no positive or negative relationship between Arizona toad and northern crayfish for both seasons. Two principal component analyses (PCA) were run on broadscale environmental variables and fine-scale habitat variables for 2021 and 2022, respectively, creating new synthetic variables for use in analysis. In 2021, the broadscale components were added to the single-species occupancy models and the top model included bioclimatic variables related to annual temperature range and precipitation. Arizona toad occupancy is lower with extreme hot temperatures and less precipitation. A logistic regression was run with the fine-scale habitat variables and the top model included PC1 and PC3. PC1 described elements related to riparian complexity, while PC3 described elements related to algae presence, including attached to cobble substrate. Arizona Toad select for certain habitats including canopy cover, shallow water, algae cover, and pebble cover. It is important to maintain riparian area habitat complexity and conserve habitat for the Arizona toad, a riparian stream specialist.
ContributorsMontgomery, Brett Joseph (Author) / Bateman, Heather L (Thesis advisor) / Albuquerque, Fabio S (Committee member) / Bogan, Michael T (Committee member) / Arizona State University (Publisher)
Created2023
157704-Thumbnail Image.png
Description
Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness and abundance patterns seen in local extents of the northern Sonoran Desert. I investigated how bird richness and abundance differed

Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness and abundance patterns seen in local extents of the northern Sonoran Desert. I investigated how bird richness and abundance differed between years and seasons and which environmental variables most influenced the patterns of richness and abundance in the Greater Phoenix Metropolitan Area.

I compiled a geodatabase of climate, bioclimatic (interactions between precipitation and temperature), vegetation, soil, and topographical variables that are known to influence both richness and abundance and used 15 years of bird point count survey data from urban and non-urban sites established by Central Arizona–Phoenix Long-Term Ecological Research project to test that relationship. I built generalized linear models (GLM) to elucidate the influence of each environmental variable on richness and abundance values taken from 47 sites. I used principal component analysis (PCA) to reduce 43 environmental variables to 9 synthetic factors influenced by measures of vegetation, climate, topography, and energy. I also used the PCA to identify uncorrelated raw variables and modeled bird richness and abundance with these uncorrelated environmental variables (EV) with GLM.

I found that bird richness and abundance were significantly different between seasons, but that richness and winter abundance were not significantly different across years. Bird richness was most influenced by soil characteristics and vegetation while abundance was most influenced by vegetation and climate. Models using EV as independent variables consistently outperformed those models using synthetically produced components from PCA. The results suggest that richness and abundance are both driven by climate and aspects of vegetation that may also be influenced by climate such as total annual precipitation and average temperature of the warmest quarter. Annual oscillations of bird richness and abundance throughout the urban Phoenix area seem to be strongly associated with climate and vegetation.
ContributorsBoehme, Cameron (Author) / Albuquerque, Fabio Suzart (Thesis advisor) / Bateman, Heather L (Committee member) / Saul, Steven E (Committee member) / Arizona State University (Publisher)
Created2019
158622-Thumbnail Image.png
Description
Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian corridors, since water is the primary limiting resource. The Madrean Archipelago in northern Mexico and southwestern United States (US) is

Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian corridors, since water is the primary limiting resource. The Madrean Archipelago in northern Mexico and southwestern United States (US) is a biodiversity hotspot that supports imperiled wildlife like jaguar (Panthera onca) and ocelot (Leopardus pardalis). Recent and ongoing infrastructure developments in the historically understudied US-México borderlands region, such as the border wall and expansion of Federal Highway 2, are altering wildlife movement and disconnecting essential habitat.

I used wildlife cameras to assess species occupancy, abundance, and related habitat variables affecting the use of washes as corridors for mammals in semi-arid Los Ojos (LO), a private ranch within a 530 km2 priority conservation area in Sonora, México located south of the border and Federal Highway 2. From October 2018 to April 2019, I deployed 21 wildlife cameras in five different riparian corridors within LO. I used single- season occupancy models and Royal Nichols abundance models to explore the relationship between habitat variables and use of riparian corridors by mammal communities of conservation concern within this region.

Twenty-one mammal species were recorded in the study area, including American black bear (Ursus americanus), white-tailed deer (Odocoileus virginianus) and the first sighting of jaguar (Panthera onca) in this region in 25 years. For the 11 medium- and large-bodied mammals recorded, habitat variables related to perennial river characteristics (distance to river, weekly water, and site width) and remoteness (distance from highway, elevation, and NDVI) were important for occupancy, but the direction of the relationship varied by species. For commonly observed species such as mountain lion (Puma concolor) and white-nosed coati (Nasua narica), topographic variety was highly informative for species abundance. These results highlight the importance of habitat diversity when identifying corridors for future protection to conserve wildlife communities in semi-arid regions. Additionally, this study provides robust evidence in support of mitigation measures (e.g. funnel fencing, over- or under- passes) along Federal Highway 2, and other barriers such as the border wall, to facilitate wildlife connectivity.
ContributorsRagan, Kinley (Author) / Hall, Sharon J (Thesis advisor) / Schipper, Jan (Thesis advisor) / Bateman, Heather L (Committee member) / Arizona State University (Publisher)
Created2020