Matching Items (6)
Filtering by

Clear all filters

156639-Thumbnail Image.png
Description
The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external conditions. The objective of my research was to investigate specific mechanisms that have helped shaped the structure of division of labor observed in social insect colonies, including age polyethism and nutrition, and phenomena known to increase colony survival such as egg cannibalism. I developed various Ordinary Differential Equation (ODE) models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully study and visualize biological outcomes in social organisms to answer questions regarding the conditions under which a colony can survive. First, I investigated how the population and evolutionary dynamics of egg cannibalism and division of labor can promote colony survival. I then introduced a model of social conflict behavior to study the inclusion of different response functions that explore the benefits of cannibalistic behavior and how it contributes to age polyethism, the change in behavior of workers as they age, and its biological relevance. Finally, I introduced a model to investigate the importance of pollen nutritional status in a honeybee colony, how it affects population growth and influences division of labor within the worker caste. My results first reveal that both cannibalism and division of labor are adaptive strategies that increase the size of the worker population, and therefore, the persistence of the colony. I show the importance of food collection, consumption, and processing rates to promote good colony nutrition leading to the coexistence of brood and adult workers. Lastly, I show how taking into account seasonality for pollen collection improves the prediction of long term consequences.
ContributorsRodríguez Messan, Marisabel (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Kuang, Yang (Committee member) / Page Jr., Robert E (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
135330-Thumbnail Image.png
ContributorsPowell, Devon (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / Windhorst, Rogier (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
Description
Only in the world of acting can an individual be denied a job simply on the basis of their appearance, and in my thesis, I sought to explore alternatives to this through the concept of nontraditional casting and casting against "type", which included the presentation of a full-length production of

Only in the world of acting can an individual be denied a job simply on the basis of their appearance, and in my thesis, I sought to explore alternatives to this through the concept of nontraditional casting and casting against "type", which included the presentation of a full-length production of the musical "Once on this Island" which I attempted to cast based on vocal quality and skill alone rather than taking physical characteristics into account. I researched the history and implementation of nontraditional casting, both in regards to race and other factors such as gender, socio-economic status, and disability. I also considered the legal and intellectual property challenges that nontraditional casting can pose. I concluded from this research that while nontraditional casting is only one solution to the problem, it still has a great deal of potential to create diversity in theater. For my own show, I held the initial auditions via audio recording, though the callback auditions were held in person so that I and my crew could appraise dance and acting ability. Though there were many challenges with our cast after this initial round of auditions, we were able to solidify our cast and continue through the rehearsal process. All things said, the show was very successful. It is my hope that those who were a part of the show, either as part of the production or the audience, are inspired to challenge the concept of typecasting in contemporary theater.
ContributorsBriggs, Timothy James (Author) / Yatso, Toby (Thesis director) / Dreyfoos, Dale (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor)
Created2014-12
155092-Thumbnail Image.png
Description
In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic

In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic Lotka-Volterra model with n + 1 bacteria, n
+ 1 phage, with explicit nutrient, where the jth phage strain infects the first j bacterial strains, a perfectly nested infection network (NIN). This system is subject to trade-off conditions on the life-history traits of both bacteria and phage given in an earlier study Jover et al. (2013). Sufficient conditions are provided to show that a bacteria-phage community of arbitrary size with NIN can arise through the succession of permanent subcommunities, by the successive addition of one new population. Using uniform persistence theory, this entire community is shown to be permanent (uniformly persistent), meaning that all populations ultimately survive.

It is shown that a modified version of the original NIN Lotka-Volterra model with implicit nutrient considered by Jover et al. (2013) is permanent. A new one-to-one infection network (OIN) is also considered where each bacterium is infected by only one phage, and that phage infects only that bacterium. This model does not use the trade-offs on phage infection range, and bacterium resistance to phage. The OIN model is shown to be permanent, and using Lyapunov function theory, coupled with LaSalle’s Invariance Principle, the unique coexistence equilibrium associated with the NIN is globally asymptotically stable provided that the inter- and intra-specific bacterial competition coefficients are equal across all bacteria.

Finally, the OIN model is extended to a “Kill the Winner” (KtW) Lotka-Volterra model

of marine communities consisting of bacteria, phage, and zooplankton. The zooplankton

acts as a super bacteriophage, which infects all bacteria. This model is shown to be permanent.
ContributorsKorytowski, Daniel (Author) / Smith, Hal (Thesis advisor) / Gumel, Abba (Committee member) / Kuang, Yang (Committee member) / Gardner, Carl (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2016
187847-Thumbnail Image.png
Description
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic)

A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The numerical portion of this work (chapter 2) focuses on simulating GBM expansion in patients undergoing treatment for recurrence of tumor following initial surgery. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor contains at least 40 percent of the volume of the observed tumor. In the analytical portion of the paper (chapters 3 and 4), a positively invariant region for our 2-population model is identified. Then, a rigorous derivation of the critical patch size associated with the model is performed. The critical patch (KISS) size is the minimum habitat size needed for a population to survive in a region. Habitats larger than the critical patch size allow a population to persist, while smaller habitats lead to extinction. The critical patch size of the 2-population model is consistent with that of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, one of the first reaction-diffusion models proposed for GBM. The critical patch size may indicate that GBM tumors have a minimum size depending on the location in the brain. A theoretical relationship between the size of a GBM tumor at steady-state and its maximum cell density is also derived, which has potential applications for patient-specific parameter estimation based on magnetic resonance imaging data.
ContributorsHarris, Duane C. (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J. (Thesis advisor) / Preul, Mark C. (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2023
131662-Thumbnail Image.png
Description
The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å,

The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å, and [S II] 6720 Å to compare with Hubble Space Telescope observations of the HH 901 jets presented in Reiter et al. (2016). We derived the emissivities for these lines from the spectral synthesis code Cloudy by Ferland et al. (2017). In addition, we used WENO simulations of density, temperature, and radiative cooling to model the jet. We found that the computed surface brightness values agreed with most of the observational surface brightness values. Thus, the 3D cylindrically symmetric simulations of surface brightness using the WENO code and Cloudy spectral emission models are accurate for jets like HH 901. After detailing these agreements, we discuss the next steps for the project, like adding an external ambient wind and performing the simulations in full 3D.
ContributorsMohan, Arun (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05