Matching Items (44)
Filtering by

Clear all filters

137211-Thumbnail Image.png
Description
Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range

Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range of plant and animal species in both continuous and episodic fashions. This study aimed to gain a better understanding of the relationship between streamflow permanence and patterns of biomass and secondary production of the riparian fauna these ecosystems support. This was accomplished through a yearlong survey in the Huachuca Mountains of Southeastern, Arizona where macroinvertebrates were collected at various sites along a gradient of streamflow permanence before, during, and after the three month monsoon season that supplies most of the annual rainfall in this region. The results of my surveys indicate that 1) Sites characterized by low streamflow permanence were more responsive to changes in precipitation than sites characterized by relatively high streamflow permanence 2) In ephemeral streams, there is a significant peak in terrestrial macroinvertebrate production and biomass both during and after the monsoon season 3) streamflow permanence may convey consistent but not exceptional secondary production whereas seasonality in rainfall may convey exceptional but episodic secondary production—more so in sites where streamflow is not consistent.
ContributorsMcCartin, Michael Patrick (Author) / Sabo, John (Thesis director) / Stromberg, Juliet (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description

The Northern Gulf of California is characterized by an extreme tidal range and temperature fluctuations between seasons, as well as a large variation in microhabitats along its shoreline. As a result, the intertidal regions exhibit a diverse and distinct collection of species that have adapted to these environmental conditions, with

The Northern Gulf of California is characterized by an extreme tidal range and temperature fluctuations between seasons, as well as a large variation in microhabitats along its shoreline. As a result, the intertidal regions exhibit a diverse and distinct collection of species that have adapted to these environmental conditions, with roughly 4.6 percent being endemic. Minimal knowledge of these ecosystems existed until the 1940’s, when the renowned author John Steinbeck accompanied marine biologist Edward Ricketts on an expedition with the purpose of documenting the biodiversity of the Sea of Cortez. Today, the majority of research in the Northern Gulf of California is directed by CEDO, the Intercultural Center for the Study of Deserts and Oceans. The purpose of this project is to compile a literature review of research on the intertidal areas of the Northern Gulf and produce an illustrated brochure that educates beach visitors on local biodiversity as a collaboration with CEDO and the Clean Beaches Committee of Puerto Peñasco. This brochure aims to increase respect and appreciation for these species, as increased tourism over the past few decades has led to detrimental effects on the ecosystem. Additionally, it serves to promote the success of the Blue Flag certification of El Mirador beach in front of Manny’s Beach Club.

ContributorsPotter, Jessica Noel (Co-author) / Potter, Jessica (Co-author) / Neuer, Susanne (Thesis director) / Mangin, Katrina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136289-Thumbnail Image.png
Description
The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for

The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for various pathogens such as rhinoviruses, coxsackievirus A21 and the malaria parasite Plasmodium falciparum. ICAM-1 contains five immunoglobulin (Ig) domains in its long N-terminal extracellular region, a hydrophobic transmembrane domain, and a small C-terminal cytoplasmic domain. The Ig domains 1-2 and Ig domains 3-4-5 have been crystallized separately and their structure solved, however the full ICAM-1 structure has not been solved. Because ICAM-1 appears to be important for the mediation of cell-to-cell communication in physiological and pathological conditions, gaining a structural understanding of the full-length membrane anchored ICAM-1 is desirable. In this context, we have transiently expressed a plant-optimized gene encoding human ICAM-1 in Nicotiana benthamiana plants using the MagnICON expression system. The plant produced ICAM-1 is forming aggregates according to previous data. Thus, the current extraction and purification protocols have been altered to include TCEP, a reducing agent. The protein was purified using TALON metal affinity resin and partially characterized using various biochemical techniques. Our results show that there is a reduction in aggregation formation with the use of TCEP.
ContributorsPatel, Heeral (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kannan, Latha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136320-Thumbnail Image.png
Description
Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction.

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.
ContributorsKendle, Robert Player (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Larrimore, Kathy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
Efforts to quantify the diversity of the T cell repertoire have generally been unsuccessful because not all factors accounting for diversity have been considered. In order to get an accurate representation of the T cell repertoire, one must incorporate analysis of germline gene diversity, diversity from somatic recombination, joining diversity

Efforts to quantify the diversity of the T cell repertoire have generally been unsuccessful because not all factors accounting for diversity have been considered. In order to get an accurate representation of the T cell repertoire, one must incorporate analysis of germline gene diversity, diversity from somatic recombination, joining diversity from N- and P- nucleotides, and TCR chain pairing diversity. Because of advances in high-throughput sequencing techniques, estimates have been able to account for diversity from TCR genes. However the ability to account for chain pairing diversity has been more difficult. In order to do so, single cell sorting techniques must be employed. These techniques, though effective, are time consuming and expensive. For this reason, no large-scale analyses have been done on the immune repertoires using these techniques. In this study, we propose a novel method for linking the two TCR chain sequences from an individual cell. DNA origami nanostructure technology is employed to capture and bind the TCRγ and TCRδ chain mRNA inside individual cells using probe strands complementary to the C-region of those sequences. We then use a dual-primer RT and ligation molecular strategy to link the two sequences together. The result is a single amplicon containing the CDR3 region of the TCRγ and TCRδ. This amplicon can then be easily PCR amplified using sequence specific primers, and sequenced. DNA origami nanostructures offer a rapid, cost-effective method alternative to conventional single cell sorting techniques, as both TCR mRNA can be captured on one origami molecule inside a single cell. At present, this study outlines a proof-of-principle analysis of the method to determine its functionality. Using known TCRγ and TCRδ sequences, the DNA origami and RT/PCR method was tested and resulting sequence data proved the effectiveness of the method. The original TCRγ and TCRδ sequences were linked together as a single amplicon containing both CDR3 regions of the genes. Thus, this method can be employed in further research to elucidate the γδ T cell repertoire. This technology is also easily adapted to any gene target or cell type and therefore presents a large opportunity to be used in other immune repertoire analysis and other immunological studies (such as the rapid identification and subsequent production of antibodies).
ContributorsPoindexter, Morgan Elizabeth (Author) / Blattman, Joseph (Thesis director) / Yan, Hao (Committee member) / Schoettle, Louis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136641-Thumbnail Image.png
Description
This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as

This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as well as contemporary fire policy, a history of wildfire in Arizona, and two recent fires in Sedona, AZ. The two fires in Sedona, the Brins Fire of 2006 and the Slide Fire of 2014, act as a focal point for this ecological management transition, as even within an 8-year period, we can see the different ways the two fires were managed and the transition to a greater ecological importance in management strategies. These all came together to give a full spectrum for the factors that have led to more ecologically-prominent wildfire management strategies in Arizona.
ContributorsGeorge-Sills, Dylan (Author) / Pyne, Stephen (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2015-05
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
Description
In medical field today, current diagnostic tools for neurodegenerative diseases fail to diagnose patients prior to the occurrence of damaging neuronal loss. Oftentimes, this means that by the time a patient has been diagnosed with a disease such as Alzheimer's disease (AD) or Parkinson's disease (PD), they have already suffered

In medical field today, current diagnostic tools for neurodegenerative diseases fail to diagnose patients prior to the occurrence of damaging neuronal loss. Oftentimes, this means that by the time a patient has been diagnosed with a disease such as Alzheimer's disease (AD) or Parkinson's disease (PD), they have already suffered severe, irreversible neurodegeneration. One of the significant weaknesses in the diagnosis and treatment of patients with AD and PD is the lack of viable biomarkers. Biomarkers are vital tools that can be utilized to identify patients who are in presymptomatic stages of a disease, track and quantify disease progression, and also determine whether or not a patient is responding to a particular treatment. RNAs are involved in all cellular processes, and due to their very specific spatial, temporal, and even cellular-level expression, abnormal expression signatures serve as key indicators of many diseases. Recently, cells have been shown to secrete nanometer-sized microvesicles, called exosomes, which moderate the horizontal transfer of mRNAs and miRNAs between cells. We hypothesize that exosomes obtained from human biofluids, such as cerebral spinal fluid (CSF) and blood plasma, can be used to determine extracellular RNA (exRNA) expression signatures associated with neurodegenerative disease. This experiment used pooled samples of CSF and plasma in order to investigate which of 3 sample enrichment methods would be most conducive to studying exRNA contained within exosomes. The results from this preliminary investigation will be used in later investigations that will seek to determine exRNA biomarkers of neurodegenerative disease.
ContributorsBeecroft, Taylor Alexandria (Author) / Capco, David (Thesis director) / Van Keuren-Jensen, Kendall (Committee member) / Huentelman, Matt (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05