Matching Items (2)
Filtering by

Clear all filters

133230-Thumbnail Image.png
Description
Central to current conceptions concerning the function of the nervous system is the consideration of how it manages to maintain precise control for repetitive tasks such as reaching, given the extensive observable mechanical degrees of freedom. Especially in the upper extremities, there are an infinite number of orientations (degrees of

Central to current conceptions concerning the function of the nervous system is the consideration of how it manages to maintain precise control for repetitive tasks such as reaching, given the extensive observable mechanical degrees of freedom. Especially in the upper extremities, there are an infinite number of orientations (degrees of freedom) that can produce the same ultimate outcome. Consider, for example, a man in a seated position pointing to an object on a table with his index finger: even if we vastly simplify the mechanics involved in that action by considering three principle joints - the shoulder, elbow, and wrist - there are an infinite number of upper arm orientations that would result in the same position of the man's index finger in three-dimensional space. It has been hypothesized that the central nervous system is capable of simplifying reaching tasks by organizing the DOFs; this suggests that repetitive, simple tasks such as reaching can be planned, that the variability in repetitive tasks is minimized, and that the central nervous system is capable of increasing stability by instantaneously resisting perturbations. Previous literature indicates that variability is decreased and stability increased in trained upper extremity movement. In this study, mechanical discrepancies between violinists of varying levels of experience were identified. It was hypothesized that variability in the positional error (deviation from an expected line of motion) and velocity of the bow, as well as the produced variability in resultant elbow angles, would decrease with increasing proficiency, and that training would have no observable effect on average peak bow velocity. Data acquisition was accomplished by constructing LED triads and implementing a PhaseSpace 3D Motion Capture system. While the positional variance and peak velocity magnitude of the bow appeared unaffected by training (p >> 0.05), more advanced players demonstrated significantly higher variability in bow velocity (p << 0.001). As such, it can be concluded that repetitive training does manifest in changes in variability; however, further investigation is required to reveal the nature of these changes.
ContributorsCulibrk, Robert (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
154994-Thumbnail Image.png
Description
When manufacturing large or complex parts, often a rough operation such as casting is used to create the majority of the part geometry. Due to the highly variable nature of the casting process, for mechanical components that require precision surfaces for functionality or assembly with others, some of the important

When manufacturing large or complex parts, often a rough operation such as casting is used to create the majority of the part geometry. Due to the highly variable nature of the casting process, for mechanical components that require precision surfaces for functionality or assembly with others, some of the important features are machined to specification. Depending on the relative locations of as-cast to-be-machined features and the amount of material at each, the part may be positioned or ‘set up’ on a fixture in a configuration that will ensure that the pre-specified machining operations will successfully clean up the rough surfaces and produce a part that conforms to any assigned tolerances. For a particular part whose features incur excessive deviation in the casting process, it may be that no setup would yield an acceptable final part. The proposed Setup-Map (S-Map) describes the positions and orientations of a part that will allow for it to be successfully machined, and will be able to determine if a particular part cannot be made to specification.

The Setup Map is a point space in six dimensions where each of the six orthogonal coordinates corresponds to one of the rigid-body displacements in three dimensional space: three rotations and three translations. Any point within the boundaries of the Setup-Map (S-Map) corresponds to a small displacement of the part that satisfies the condition that each feature will lie within its associated tolerance zone after machining. The process for creating the S-Map involves the representation of constraints imposed by the tolerances in simple coordinate systems for each to-be-machined feature. Constraints are then transformed to a single coordinate system where the intersection reveals the common allowable ‘setup’ points. Should an intersection of the six-dimensional constraints exist, an optimization scheme is used to choose a single setup that gives the best chance for machining to be completed successfully. Should no intersection exist, the particular part cannot be machined to specification or must be re-worked with weld metal added to specific locations.
ContributorsKalish, Nathan (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Thesis advisor) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016