Matching Items (7)
Filtering by

Clear all filters

132878-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsNossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132879-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three different methods of underwater communication were found, but only one, acoustics, was feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience.
ContributorsHocken, Chase (Co-author) / Nossaman, Grace (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132880-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsPadilla, Bryan (Co-author) / Nossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132777-Thumbnail Image.png
Description
The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.
ContributorsLee, Byeong Mok (Co-author) / Xi, Andrew Jinchi (Co-author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Baumann, Alicia (Committee member) / Cochran, Douglas (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132785-Thumbnail Image.png
Description
The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.
ContributorsXi, Andrew Jinchi (Co-author) / Lee, Matthew Byeongmok (Co-author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Cochran, Douglas (Committee member) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164815-Thumbnail Image.png
Description

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.

ContributorsGin, Taylor (Author) / McCarthy, Alexandra (Co-author) / Berisha, Visar (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
164816-Thumbnail Image.png
Description

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.

ContributorsMcCarthy, Alexandra (Author) / Gin, Taylor (Co-author) / Berisha, Visar (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05