Matching Items (2)
Filtering by

Clear all filters

157388-Thumbnail Image.png
Description
Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that seem to have a positive impact. However, few existing tools

Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that seem to have a positive impact. However, few existing tools support people in identifying interventions that work for them, personally.

One approach to support such personalization is via self-experimentation using single-case designs. ‘Hack Your Health’ is a tool that guides individuals through an 18-day self-experiment to test if an intervention they choose (e.g., meditation, gratitude journaling) improves their own psychological well-being (e.g., stress, happiness), whether it fits in their routine, and whether they enjoy it.

The purpose of this work was to conduct a formative evaluation of Hack Your Health to examine user burden, adherence, and to evaluate its usefulness in supporting decision-making about a health intervention. A mixed-methods approach was used, and two versions of the tool were tested via two waves of participants (Wave 1, N=20; Wave 2, N=8). Participants completed their self-experiments and provided feedback via follow-up surveys (n=26) and interviews (n=20).

Findings indicated that the tool had high usability and low burden overall. Average survey completion rate was 91%, and compliance to protocol was 72%. Overall, participants found the experience useful to test if their chosen intervention helped them. However, there were discrepancies between participants’ intuition about intervention effect and results from analyses. Participants often relied on intuition/lived experience over results for decision-making. This suggested that the usefulness of Hack Your Health in its current form might be through the structure, accountability, and means for self-reflection it provided rather than the specific experimental design/results. Additionally, situations where performing interventions within a rigorous/restrictive experimental set-up may not be appropriate (e.g., when goal is to assess intervention enjoyment) were uncovered. Plausible design implications include: longer experimental and phase durations, accounting for non-compliance, missingness, and proximal/acute effects, and exploring strategies to complement quantitative data with participants’ lived experiences with interventions to effectively support decision-making. Future work should explore ways to balance scientific rigor with participants’ needs for such decision-making.
ContributorsPhatak, Sayali Shekhar (Author) / Buman, Matthew P (Thesis advisor) / Hekler, Eric B. (Committee member) / Huberty, Jennifer L (Committee member) / Johnston, Erik W., 1977- (Committee member) / Swan, Pamela D (Committee member) / Arizona State University (Publisher)
Created2019
154920-Thumbnail Image.png
Description
Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering concepts in behavioral change settings. Social Cognitive Theory (SCT) is among the most influential theories of health behavior and has

Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering concepts in behavioral change settings. Social Cognitive Theory (SCT) is among the most influential theories of health behavior and has been used as the conceptual basis of many behavioral interventions. This dissertation examines adaptive behavioral interventions for physical inactivity problems based on SCT using system identification and control engineering principles. First, a dynamical model of SCT using fluid analogies is developed. The model is used throughout the dissertation to evaluate system identification approaches and to develop control strategies based on Hybrid Model Predictive Control (HMPC). An initial system identification informative experiment is designed to obtain basic insights about the system. Based on the informative experimental results, a second optimized experiment is developed as the solution of a formal constrained optimization problem. The concept of Identification Test Monitoring (ITM) is developed for determining experimental duration and adjustments to the input signals in real time. ITM relies on deterministic signals, such as multisines, and uncertainty regions resulting from frequency domain transfer function estimation that is performed during experimental execution. ITM is motivated by practical considerations in behavioral interventions; however, a generalized approach is presented for broad-based multivariable application settings such as process control. Stopping criteria for the experimental test utilizing ITM are developed using both open-loop and robust control considerations.

A closed-loop intensively adaptive intervention for physical activity is proposed relying on a controller formulation based on HMPC. The discrete and logical features of HMPC naturally address the categorical nature of the intervention components that include behavioral goals and reward points. The intervention incorporates online controller reconfiguration to manage the transition between the behavioral initiation and maintenance training stages. Simulation results are presented to illustrate the performance of the system using a model for a hypothetical participant under realistic conditions that include uncertainty. The contributions of this dissertation can ultimately impact novel applications of cyberphysical system in medical applications.
ContributorsMartín Moreno, César Antonio (Author) / Rivera, Daniel E (Thesis advisor) / Hekler, Eric B. (Committee member) / Peet, Matthew M (Committee member) / Tsakalis, Konstantinos S (Committee member) / Arizona State University (Publisher)
Created2016