Matching Items (258)
Filtering by

Clear all filters

150035-Thumbnail Image.png
Description
Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of

Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of critical load bearing structures can lead to an increase in time allowed for the evacuation of occupants, recovery of property, and access to the fire. Much work has been done in improving the structural performance of concrete including reducing column sizes and providing a safer structure. As a result, high-strength (HS) concrete has been developed to fulfill the needs of such improvements. HS concrete varies from normal-strength (NS) concrete in that it has a higher stiffness, lower permeability and larger durability. This, unfortunately, has resulted in poor performance under fire. The lower permeability allows for water vapor to build up causing HS concrete to suffer from explosive spalling under rapid heating. In addition, the coefficient of thermal expansion (CTE) of HS concrete is lower than that of NS concrete. In this study, the effects of introducing a region of crumb rubber concrete into a steel-reinforced concrete column were analyzed. The inclusion of crumb rubber concrete into a column will greatly increase the thermal resistivity of the overall column, leading to a reduction in core temperature as well as the rate at which the column is heated. Different cases were analyzed while varying the positioning of the crumb-rubber region to characterize the effect of position on the improvement of fire resistance. Computer simulated finite element analysis was used to calculate the temperature and strain distribution with time across the column's cross-sectional area with specific interest in the steel - concrete region. Of the several cases which were investigated, it was found that the improvement of time before failure ranged between 32 to 45 minutes.
ContributorsZiadeh, Bassam Mohammed (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2011
149676-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have

Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have enabled the engineering of synthetic analogues, bimetallic colloidal particles, that swim due to asymmetric ion flux originally proposed by Mitchell. Bimetallic colloidal particles swim through aqueous solutions by converting chemical fuel to fluid motion through asymmetric electrochemical reactions. This dissertation presents novel bimetallic motor fabrication strategies, motor functionality, and a study of the motor collective behavior in chemical concentration gradients. Brownian dynamics simulations and experiments show that the motors exhibit chemokinesis, a motile response to chemical gradients that results in net migration and concentration of particles. Chemokinesis is typically observed in living organisms and distinct from chemotaxis in that there is no particle directional sensing. The synthetic motor chemokinesis observed in this work is due to variation in the motor's velocity and effective diffusivity as a function of the fuel and salt concentration. Static concentration fields are generated in microfluidic devices fabricated with porous walls. The development of nanoscale particles that swim autonomously and collectively in chemical concentration gradients can be leveraged for a wide range of applications such as directed drug delivery, self-healing materials, and environmental remediation.
ContributorsWheat, Philip Matthew (Author) / Posner, Jonathan D (Thesis advisor) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Buttry, Daniel (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
Description
As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.
ContributorsOvermann, William (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Taylor, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150339-Thumbnail Image.png
Description
A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air

A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air that is stored in a tank at a particular pressure will be introduced during the compression stage of the engine cycle to reduce pump work. In the modified design the intake and exhaust valve timings are modified to achieve this process. The time required to fill the combustion chamber with compressed air to the storage pressure immediately before spark and the state of the air with respect to crank angle is modeled numerically using a crank step energy and mass balance model. The results are used to complete the engine cycle analysis based on air standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at the baseline storage conditions (280 psi, 70OF) the modified engine does not meet the imposed constraints of staying below the maximum pressure of the unmodified engine. A new storage pressure of 235 psi is recommended. This only provides a 7.7% increase in thermal efficiency for the same work output. The modification of this engine for this low efficiency gain is not recommended.
ContributorsJoy, Lijin (Author) / Trimble, Steve (Thesis advisor) / Davidson, Joseph (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
148044-Thumbnail Image.png
Description

Research has shown that being a female athlete in a male-dominated sports world is an oppressive burden, yet the experiences of being a black female athlete have been largely ignored. To combat this lack of attention, this paper invokes communication and feminist theorist Bell Hook's concept of moving black women

Research has shown that being a female athlete in a male-dominated sports world is an oppressive burden, yet the experiences of being a black female athlete have been largely ignored. To combat this lack of attention, this paper invokes communication and feminist theorist Bell Hook's concept of moving black women from margin to center to reveal the intersectional oppression of gender and racial narratives that they face in sports. By outlining the difference between white and black femininity and studying media portrayals of popular black female athletes such as Venus and Serena Williams and others, it becomes obvious how black women are typecast into certain social and athletic roles. This research also includes an auto-ethnographic component of my own experience as a black female lacrosse player at the NCAA Division I level. This component functions as a point of comparison and contrast of the ideas and concepts I discuss. Lastly, I offer recommendations and suggestions as to how to empower young black female athletes and retain them in a variety of sports. The goal of my thesis is to place special attention onto black women in an area which there is an extreme lack of representation. My own empirical research has led me to the conclusion that not only is such a discussion important, but it is absolutely necessary. If we are to fight back against hegemonic social structures such as racism and gender roles in the sports world, we must first understand what we are up against. My thesis gives us a glimpse into our imposing opponents, and I hope that future research continues this trend so that black female athletes like myself may one day be considered an athlete in the same sense that our white peers are.

ContributorsWright, Daniela Casselle (Author) / Edson, Belle (Thesis director) / Zanin, Alaina (Committee member) / Hugh Downs School of Human Communication (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147983-Thumbnail Image.png
Description

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were being affected by COVID-19, it was obvious that their group was not immune to the issues the world was facing. Being stuck at home with little to do took a mental and physical toll on many kids. That is when EVOLVE Academy became an idea; our team wanted to create a fully online platform for children to help them practice and evolve their athletics skills, or simply spend part of their day performing a physical and health activity. Our team designed a solution that would benefit children, as well as parents that were struggling to find engaging activities for their kids while out of school. We quickly encountered issues that made it difficult for us to reach our target audience and make them believe and trust our platform. However, we persisted and tried to solve and answer the questions and problems that came along the way. Sadly, the same pandemic that opened the widow for EVOLVE Academy to exist, is now the reason people are walking away from it. Children want real interaction. They want to connect with other kids through more than just a screen. Although the priority of parents remains the safety and security of their kids, parents are also searching and opting for more “human” interactions, leaving EVOLVE Academy with little room to grow and succeed.

ContributorsParmenter, Taylor (Co-author) / Hernandez, Melany (Co-author) / Whitelocke, Kailas (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeff (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor, Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147984-Thumbnail Image.png
Description

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were being affected by COVID-19, it was obvious that their group was not immune to the issues the world was facing. Being stuck at home with little to do took a mental and physical toll on many kids. That is when EVOLVE Academy became an idea; our team wanted to create a fully online platform for children to help them practice and evolve their athletics skills, or simply spend part of their day performing a physical and health activity. Our team designed a solution that would benefit children, as well as parents that were struggling to find engaging activities for their kids while out of school. We quickly encountered issues that made it difficult for us to reach our target audience and make them believe and trust our platform. However, we persisted and tried to solve and answer the questions and problems that came along the way. Sadly, the same pandemic that opened the widow for EVOLVE Academy to exist, is now the reason people are walking away from it. Children want real interaction. They want to connect with other kids through more than just a screen. Although the priority of parents remains the safety and security of their kids, parents are also searching and opting for more “human” interactions, leaving EVOLVE Academy with little room to grow and succeed.

ContributorsHernandez, Melany (Co-author) / Parmenter, Taylor (Co-author) / Byrne, Jared (Thesis director) / Kunowski, Jeffrey (Committee member) / Lee, Christopher (Committee member) / Thunderbird School of Global Management (Contributor, Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147986-Thumbnail Image.png
Description

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were being affected by COVID-19, it was obvious that their group was not immune to the issues the world was facing. Being stuck at home with little to do took a mental and physical toll on many kids. That is when EVOLVE Academy became an idea; our team wanted to create a fully online platform for children to help them practice and evolve their athletics skills, or simply spend part of their day performing a physical and health activity. Our team designed a solution that would benefit children, as well as parents that were struggling to find engaging activities for their kids while out of school. We quickly encountered issues that made it difficult for us to reach our target audience and make them believe and trust our platform. However, we persisted and tried to solve and answer the questions and problems that came along the way. Sadly, the same pandemic that opened the widow for EVOLVE Academy to exist, is now the reason people are walking away from it. Children want real interaction. They want to connect with other kids through more than just a screen. Although the priority of parents remains the safety and security of their kids, parents are also searching and opting for more “human” interactions, leaving EVOLVE Academy with little room to grow and succeed.

ContributorsWhitelocke, Kailas N (Co-author) / Hernandez, Melany (Co-author) / Parmenter, Taylor (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeff (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147960-Thumbnail Image.png
Description

The ongoing Global Coronavirus Pandemic has been upheving social norms for over a year at this point. For countless people, our lives look very different at this point in time than they did before the pandemic began. Quarantine, Shelter in Place, Work from Home, and Online classes have led global

The ongoing Global Coronavirus Pandemic has been upheving social norms for over a year at this point. For countless people, our lives look very different at this point in time than they did before the pandemic began. Quarantine, Shelter in Place, Work from Home, and Online classes have led global populations to become less active leading to an increase in sedentary lifestyles. The final impact of this consequence is unknown, but emerging studies have led to concrete evidence of decreased physical and mental wellbeing, particularly in children. VirusFreeSports was the brainchild of three ASU Honors students who sought to remedy these devastating consequences by creating environments where children can participate in sports and exercise safely, free of the threat COVID-19 or other transmissible illnesses. The ultimate goal for the project team was to build traction for their idea, which culminated in a video pitch sent to potential investors. Although largely created as an exercise and we did not create a full certification course, merely a prototype through a website with sample questions to gauge interest, the project was a success as a large target market for this product was identified that showed great promise. Our team believes that early entrance to the market, as well as the lack of any other competitors would give the team a tremendous advantage in creating an impactful and influential service.

ContributorsVrbanac, Matthew Thomas (Co-author) / Tanveer, Samad (Co-author) / Israel, Natasha (Co-author) / Byrne, Jared (Thesis director) / Lee, Chris (Committee member) / Kunowski, Jeff (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05