Matching Items (6)
Filtering by

Clear all filters

153191-Thumbnail Image.png
Description
Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are

Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are presented but, to the best of our knowledge, the effects of real-time feedback of step length and uprightness of posture on gait and posture have not been specifically investigated. If it can be demonstrated that real-time feedback can improve posture and gait, the resultant knowledge could be used to design effective rehabilitation strategies to improve quality of life in this population.

In this feasibility study, we have developed a treadmill-based experimental paradigm to provide feedback of step length and upright posture in real-time. Ten subjects (mean age 65.9 ± 7.6 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were evaluated in their ability to successfully utilize real-time feedback presented during quiet standing and treadmill walking tasks during a single data collection session in their medication-on state. During quiet standing tasks in which back angle feedback was provided, subjects were asked to utilize the feedback to maintain upright posture. During treadmill walking tasks, subjects walked at their self-selected speed for five minutes without feedback, with feedback of back angle, or with feedback of step length. During walking tasks with back angle feedback, subjects were asked to utilize the feedback to maintain upright posture. During walking tasks with step length feedback, subjects were asked to utilize the feedback to walk with increased step length. During quiet standing tasks, measurements of back angle were obtained; during walking tasks, measurements of back angle, step length, and step time were obtained.

Subjects stood and walked with significantly increased upright posture during the tasks with real-time back angle feedback compared to tasks without feedback. Similarly, subjects walked with significantly increased step length during tasks with real-time step length feedback compared to tasks without feedback. These results demonstrate that people with PD can utilize real-time feedback to improve upright posture and gait.
ContributorsJellish, Jeremy (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
153906-Thumbnail Image.png
Description
Described is a study investigating the feasibility and predictive value of the Teacher Feedback Coding System, a novel observational measure of teachers’ feedback provided to students in third grade classrooms. This measure assessed individual feedback events across three domains: feedback type, level of specificity and affect of the teacher.

Described is a study investigating the feasibility and predictive value of the Teacher Feedback Coding System, a novel observational measure of teachers’ feedback provided to students in third grade classrooms. This measure assessed individual feedback events across three domains: feedback type, level of specificity and affect of the teacher. Exploratory and confirmatory factor analysis revealed five factors indicating separate types of feedback: positive and negative academic-informative feedback, positive and negative behavioral-informative feedback, and an overall factor representing supportive feedback. Multilevel models revealed direct relations between teachers’ negative academic-informative feedback and students’ spring math achievement, as well as between teachers’ negative behavioral-informative feedback and students’ behavior patterns. Additionally, a fall math-by-feedback interaction was detected in the case of teachers’ positive academic-informative feedback; students who began the year struggling in math benefitted from more of this type of feedback. Finally, teachers’ feedback was investigated as a potential mediator in a previously established relation between teachers’ self-reported depressive symptoms and the observed quality of the classroom environment. Partial mediation was detected in the case of teachers’ positive academic-informative feedback, such that this type of feedback was accountable for a portion of the variance observed in the relation between teachers’ depressive symptoms and the quality of the classroom environment.
ContributorsMcLean, Leigh Ellen (Author) / Connor, Carol M. (Thesis advisor) / Lemery, Kathryn (Committee member) / Doane, Leah (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2015
155901-Thumbnail Image.png
Description
Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp.

Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies.
ContributorsIndahlastari, Aprinda (Author) / Sadleir, Rosalind J (Thesis advisor) / Abbas, James (Committee member) / Frakes, David (Committee member) / Kleim, Jeffrey (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2017
155689-Thumbnail Image.png
Description
Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool

Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool that connects paper-based assessments to digital space. I designed a classroom study and collected data from ASU computer science classes. I tracked and modeled students' reviewing and reflecting behaviors based on the use of WPGA. I analyzed students' reviewing efforts, in terms of frequency, timing, and the associations with their academic performances. Results showed that students put extra emphasis in reviewing prior to the exams and the efforts demonstrated the desire to review formal assessments regardless of if they were graded for academic performance or for attendance. In addition, all students paid more attention on reviewing quizzes and exams toward the end of semester.
ContributorsHuang, Po-Kai (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017
155188-Thumbnail Image.png
Description
The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer

The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer is used for the study with the pulse characteristics of 57msec long train burst and duty cycle of 8% followed by an interrogative electrical stimulus varying from 30μsecs to 2msecs in pulse duration. The nerve excitability is determined by the compound action potential (CAP) amplitude evoked by a constant electrical stimulus. We observe that ultrasound's immediate effect on axons is to reduce the electrically evoked CAP amplitude and thereby suppressive in effect. However, a subsequent time delayed increased excitability was observed as reflected in the CAP amplitude of the nerve several tens of milliseconds later. This subsequent change from ultrasound induced nerve inhibition to increased excitability as a function of delay from ultrasound pulse application is unexpected and not predicted by typical nerve ion channel kinetic models. The recruitment curve of the sciatic nerve modified by ultrasound suggests the possibility of a fiber specific response where the ultrasound inhibits the faster fibers more than the slower ones. Also, changes in the shape of the CAP waveform when the nerve is under the inhibitive effect of ultrasound was observed. It is postulated that these effects can be a result of activation of stretch activation channels, mechanical sensitivity of the nerve to acoustic radiation pressure and modulation of ion channels by ultrasound.

The neuromodulatory capabilities of ultrasound in tandem with electrical stimulation has a significant potential for development of neural interfaces to peripheral nerve.
ContributorsChirania, Sanchit (Author) / Towe, Bruce (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2016
161865-Thumbnail Image.png
Description
Motor skill learning is important to rehabilitation, sports, and many occupations. When attempting to learn or adapt a motor skill, some individuals learn slower or less compared to others despite the same amount of motor practice. This dissertation aims to understand the factors that contributed to such variability in motor

Motor skill learning is important to rehabilitation, sports, and many occupations. When attempting to learn or adapt a motor skill, some individuals learn slower or less compared to others despite the same amount of motor practice. This dissertation aims to understand the factors that contributed to such variability in motor learning, and thereby identify viable methods to enhance motor learning. Behavioral evidence from our lab showed that visuospatial ability is positively related to the extent of motor learning. Neuroimaging studies suggest that motor learning and visuospatial processes share common frontoparietal neural structures, and that this visuospatial-motor relationship may be more pronounced in the right hemisphere compared to the left. Thus, the overall objective of this dissertation is to determine if aspects of motor learning (such as the rate and extent of skill acquisition) may be modifiable through neuromodulation of the right frontoparietal network. In Aim 1, anodal transcranial direct current stimulation (tDCS) was used to test whether modulating the right parietal area affects visuospatial ability and motor skill acquisition. A randomized, three-arm design was used, which added a no-tDCS control group to the double-blinded sham-control protocol to address placebo effects. No tDCS treatment effect was observed, likely due to low statistical power to detect any treatment effects as the study is still ongoing. However, the current results revealed a unique finding that the placebo effect of tDCS was stronger than its treatment effect on motor learning, with implications that tDCS and motor studies should measure and control for placebo effects. In Aim 2, right frontoparietal connectivity during resting-state EEG was estimated via alpha band imaginary coherence to test whether it correlated with visuospatial performance and motor skill acquisition. As a preliminary step towards leveraging the frontoparietal network for EEG-neurofeedback applications, this work found that alpha imaginary coherence was positively correlated with visuospatial function, but not with motor skill acquisition during a limited dose of motor practice (only 5 trials). This work establishes a premise for developing frontoparietal alpha IC-based neurofeedback for cognitive training in rehabilitation, while warranting future studies to test the relationship between alpha IC and motor learning with a more extensive motor training regimen.
ContributorsWang, Peiyuan (Author) / Schaefer, Sydney Y (Thesis advisor) / Buneo, Christopher A (Committee member) / Abbas, James (Committee member) / Lohse, Keith R (Committee member) / Wyckoff, Sarah N (Committee member) / Arizona State University (Publisher)
Created2021