Matching Items (4)
Filtering by

Clear all filters

137336-Thumbnail Image.png
Description
Mr. Green has stage 4 prostate cancer which has spread to the bones and liver and has become resistant to radiation and standard chemotherapy treatment. After 3 rounds of chemotherapy, his primary oncologist recommends that he participate in a clinical trial. He went to Dr. Red at the Saguaro Clinic

Mr. Green has stage 4 prostate cancer which has spread to the bones and liver and has become resistant to radiation and standard chemotherapy treatment. After 3 rounds of chemotherapy, his primary oncologist recommends that he participate in a clinical trial. He went to Dr. Red at the Saguaro Clinic after reading on the internet about a new Phase 1 clinical trial that the clinic is hosting, which is designed to target a specific receptor called AB-111 that may be present in malignant prostate, cervical, ovarian, and breast cells. After signing consent and completing the blood screens in the morning at the clinic, Mr. Green is told his liver enzymes are too high and the ranges specified in the protocol prohibit him from enrolling. Mr. Green is noticeably affected and distressed at this news, and Dr. Red recommends end-of-life care. Behind the scenes, this event is noted on official medical documents and trial study rosters as a "screen fail." This narrative, while fictional, is realistic because similar events occur in cancer clinical trial sites on a regular basis. I look at the inner "world" and mental journey of possible clinical trial candidates as they seek out information about clinical trials and gain understanding of their function \u2014 specifically in the context of Phase 1 cancer clinical trials. To whom is the language of the term "screen failure" useful? How does excluding individuals from clinical trials protect their health and does the integrity of the trial data supersede the person's curative goals? What is the message that cancer patients (potential research subjects) receive regarding clinical trials from sources outside their oncologists?
ContributorsMcKane, Alexandra (Author) / Maienschein, Jane (Thesis director) / Ellison, Karin (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor)
Created2013-12
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161752-Thumbnail Image.png
Description
Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive technique that offers a unique ability to provide the spatial distribution of relevant biochemical compounds (metabolites). The ‘spectrum’ of information provided by MRSI is used as biomarkers for the differential diagnosis of several diseases such as cancer or neurological disorders. Treatment responsive

Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive technique that offers a unique ability to provide the spatial distribution of relevant biochemical compounds (metabolites). The ‘spectrum’ of information provided by MRSI is used as biomarkers for the differential diagnosis of several diseases such as cancer or neurological disorders. Treatment responsive brain tumors can appear similar to non-responsive tumors on conventional anatomical MR images, earlier in the therapy, leading to a poor prognosis for many patients. Biomarkers such as lactate are particularly of interest in the oncological studies of solid tumors to determine their energy metabolism, blood flow, and hypoxia. Despite the capability of nearly all clinical MRI scanners to perform MRSI only limited integration of MRSI into routine clinical studies has occurred to date. The major challenges affecting its true potential are the inherently long acquisition time, low signal-to-noise (SNR) of the signals, overlapping of spectral lines, or the presence of artifacts. The goal of this dissertation work is to facilitate MRSI in routine clinical studies without affecting the current patient throughput. In this work, the Compressed Sensing (CS) strategy was used to accelerate conventional Point RESolved Spectroscopy (PRESS) MRSI by sampling well below the Shannon-Nyquist limit. Two undersampling strategies, namely the pseudo-random variable density and a novel a priori method was developed and implemented on a clinical scanner. Prospectively undersampled MRSI data was acquired from patients with various brain-related concerns. Spatial-spectral post-processing and CS reconstruction pipeline was developed for multi-channel undersampled data. The fidelity of the CS-MRSI method was determined by comparing the CS reconstructed data to the fully sampled data. Statistical results showed that the a priori approach maintained high spectral fidelity compared to the fully sampled reference for an 80% reduction in scan time. Next, an improvement to the CS-MRSI reconstruction was achieved by incorporating coil sensitivity maps as support in the iterative process. Further, a CS-MRSI-based fast lactate spectroscopic imaging method was developed and implemented to achieve complete water and fat suppression for accurate spatial localization and quantification of lactate in tumors. In vitro phantoms were developed, and the sequence was tested to determine the efficacy of CS-MRSI for low SNR signals, the efficacy of the CS acceleration was determined with statistical analysis.
ContributorsBikkamane Jayadev, Nutandev (Author) / Kodibagkar, Vikram (Thesis advisor) / Chang, John (Committee member) / Robison, Ryan (Committee member) / Smith, Barbara (Committee member) / Sohn, Sung-Min (Committee member) / Arizona State University (Publisher)
Created2021
165040-Thumbnail Image.png
Description
The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.
ContributorsSokol, Samantha (Author) / Sohn, Sung-Min (Thesis director) / Allee, David (Committee member) / Jones, Anne (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05