Matching Items (6)
Filtering by

Clear all filters

156979-Thumbnail Image.png
Description
Salivary cortisol is the least invasive way in measuring hormonal response during exercise without interruption. In nationally ranked fencers (n=21), changes in cortisol were monitored by measurement of salivary cortisol sampled throughout different rounds of three North American Cup tournaments during the 2017-2018 United States fencing season. The changes were

Salivary cortisol is the least invasive way in measuring hormonal response during exercise without interruption. In nationally ranked fencers (n=21), changes in cortisol were monitored by measurement of salivary cortisol sampled throughout different rounds of three North American Cup tournaments during the 2017-2018 United States fencing season. The changes were also compared when looking at if a bout ended in a victory or defeat; the difference in rank between opponents; and the difference in score at the end of the bout. Immediately before the tournament cortisol levels were sampled, changes were in comparison to the initial sample as well as change from one bout to the next. The primary purpose of this study was to (a) compare how cortisol levels fluctuate during a tournament and (b) analyze cortisol levels to see if there is an optimal rage for performance. Eustress, “good stress” was considered optimal when the athletes were at peak performance. Here, peak performance means accomplishing the task, with the task being the bout ending in a victory. It was hypothesized that (a) cortisol levels would peak after a loss or stressful bout and (b) there would be an optimal range of cortisol for peak performance. This study supports the findings that cortisol peaks after a loss, and could point to optimal cortisol levels being more of an individualized range for each athlete. If these athletes can explicitly see just how their hormones rise and fall, then perhaps being more aware of these levels and being able to embrace them could lead to peak performance.
ContributorsVie, Jerica Nicole (Author) / Baluch, D. Page (Thesis advisor) / Sterner, Beckett (Committee member) / Cataldo, Donna (Committee member) / Arizona State University (Publisher)
Created2018
Description

There is a wide intersection where animal and human lives interact or mimic each other behaviorally or biologically. A lot of the products that are part of our day-to-day were first validated by animals, and eventually found their way to us. From food to beauty products to scientific developments, animals

There is a wide intersection where animal and human lives interact or mimic each other behaviorally or biologically. A lot of the products that are part of our day-to-day were first validated by animals, and eventually found their way to us. From food to beauty products to scientific developments, animals deal with a lot behind the scenes. Some humans are cognizant of what is happening backstage, while others only see the final presentation. Either way, all of us have our opinions in support or against animal treatment. The project is heavily inspired from my experience in a neurorehabilitation lab, so the foundation is similar to the structure and function of neurons. Through this project, I am focusing on one aspect of this debate, which is animal testing in the scietific setting. The goal of the project is not to force the viewer to choose one side, but to understand the big picture and the reasoning of the opposing side.

ContributorsSharma, Bhavya (Author) / Beiner, Susan (Thesis director) / Roberson, Robert (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
Description
“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in

“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in the tree frog’s vocal sac, liver, and blood were affected by radiation from Fukushima’s power plant explosion. Without carotenoids, the pigment that gives the frogs their orange color on their necks, their courtship practices would be impacted and would not be as able to show off their fitness to potential mates. The artwork inspired by this research displayed the tree frog’s degradation over time due to radiation, starting with normal life and ending with their death and open on the table. The sculptures also pinpoint where the carotenoids were being measured with a brilliant orange glaze. Through ceramic hand building, the artist created larger than life frogs in hopes to elicit curiosity about them and their plight. While the paper did not conclude any changes in the frog’s physiology after 18 months of exposure, there are still questions that are left unanswered. Why did these frogs not have any reaction? Could there be any effects after more time has passed? Is radiation leakage as big of a problem as previously thought? The only way to get the answers to these questions is to be aware of these amphibians, the circumstances that led them to be involved, and continued research on them and radiation.
ContributorsWesterfield, Savannah (Author) / Beiner, Susan (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130984-Thumbnail Image.png
Description
Animal testing is a long-running institution in biomedical research that is seen as a necessary step in the development of new drugs and treatments in the United States. Using animal models that have biological similarities to humans, it is assumed that we can ethically perform basic research that is translatable

Animal testing is a long-running institution in biomedical research that is seen as a necessary step in the development of new drugs and treatments in the United States. Using animal models that have biological similarities to humans, it is assumed that we can ethically perform basic research that is translatable to human health. However, recent years have seen this assumption challenged by the fact that most preclinical research fails to survive the gauntlet of human trials into a functioning treatment on the market. This has marked ethical implications for both the people that depend on new treatments for their health, and the animals used in the research themselves. The purpose of this thesis is to develop solutions for the problems facing animal testing in the United States. First, I identify the political and economic basis of the modern system of animal testing by examining legislation and the IACUCs that govern animal research to understand why the practice continues to be used despite its low rate of success. I then examine factors such as epigenetics and the laboratory environment to explain reasons why animal research fails to translate to humans. Finally, I cover new in-vitro methods such as organoids and organ-on-a-chip technologies to show the potential that alternatives hold for biomedical research. As a result of this analysis, I propose the further integration of alternatives into our system of animal testing to make up for the translational failures the field currently experiences. I also highlight the importance of having IACUCs balanced between animal researchers and members of the public to improve the welfare of animals used in research and increase the transparency of their work. Including more animals into the Animal Welfare Act is also proposed to better standardize our treatment of them and keep experimental results more consistent.
ContributorsCammann, Davis Bukovi (Author) / Barca, Lisa (Thesis director) / Hurlbut, Ben (Committee member) / Sterner, Beckett (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
168791-Thumbnail Image.png
Description
Increasingly, college courses have transitioned from traditional lecture to student-centered active learning, creating more opportunities for students to interact with each other in class. Recent studies have indicated that these increased interactions in active learning can create situations where students’ identities are more salient, which could result in novel challenges

Increasingly, college courses have transitioned from traditional lecture to student-centered active learning, creating more opportunities for students to interact with each other in class. Recent studies have indicated that these increased interactions in active learning can create situations where students’ identities are more salient, which could result in novel challenges for students with marginalized identities. Christianity has been shown to be a marginalized identity in the context of undergraduate biology courses, but it is unknown whether Christian students experience challenges in their interactions with other students in class. The social psychology framework of concealable stigmatized identity (CSI) was used to explore the experiences of Christian students during peer interactions in undergraduate biology courses. Thirty students were interviewed, and most felt their religious identity was salient during peer interactions in biology. Students also reported that they have more opportunities to reveal their religious identity in courses that incorporate peer discussion than in courses that do not. Students claimed that revealing their religious identity to their peers could be beneficial because they could find other religious students in their courses, grow closer with their peers, and combat stereotypes about religious individuals in science. Though most students anticipated stigma, which caused some students to choose not to reveal their religious identities, comparatively few had experienced stigma during peer interactions in their college biology courses, and even fewer had experienced stigma from peers who knew they were religious. These findings indicate that it be may important to teach students how to be culturally competent to reduce Christian students’ anticipated and experienced stigma in active learning courses.
ContributorsEdwards, Baylee Anne (Author) / Brownell, Sara E. (Thesis advisor) / Barnes, M. Elizabeth (Committee member) / Sterner, Beckett (Committee member) / Cooper, Katelyn M. (Committee member) / Arizona State University (Publisher)
Created2022