Matching Items (11)
Filtering by

Clear all filters

151480-Thumbnail Image.png
Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use

The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
ContributorsAustin, Hiroko (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012
152719-Thumbnail Image.png
Description
Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21

Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21 young (21-35 years) and 22 elderly (50-75 years) healthy subjects while they performed three different tasks: quiet standing, dynamic weight shifts, and over ground walking. During the quiet standing task, the subjects stood with their eyes open and eyes closed. When performing dynamic weight shifts task, subjects shifted their Center of Pressure (CoP) from the center target to outward targets and vice versa while following real-time feedback of their CoP. For over ground walking tasks, subjects performed Timed Up and Go test, tandem walking, and regular walking at their self-selected speed. Various quantitative balance and gait measures were obtained to evaluate the above respective balance and walking tasks. Total excursion, sway area, and mean frequency of CoP during quiet standing were found to be the most reliable and showed significant increase with age and absence of visual input. During dynamic shifts, elderly subjects exhibited higher initiation time, initiation path length, movement time, movement path length, and inaccuracy indicating deterioration in performance. Furthermore, the elderly walked with a shorter stride length, increased stride variability, with a greater turn and turn-to-sit duration. Significant correlations were also observed between measures derived from the different balance and gait tasks. Thus, it can be concluded that aging deteriorates the postural control system affecting static and dynamic balance and some of the alterations in CoP and gait measures may be considered as protective mechanisms to prevent loss of balance.
ContributorsBalasubramanian, Shruthi (Author) / Krishnamurthi, Narayanan (Thesis advisor) / Abbas, James (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2014
153191-Thumbnail Image.png
Description
Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are

Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are presented but, to the best of our knowledge, the effects of real-time feedback of step length and uprightness of posture on gait and posture have not been specifically investigated. If it can be demonstrated that real-time feedback can improve posture and gait, the resultant knowledge could be used to design effective rehabilitation strategies to improve quality of life in this population.

In this feasibility study, we have developed a treadmill-based experimental paradigm to provide feedback of step length and upright posture in real-time. Ten subjects (mean age 65.9 ± 7.6 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were evaluated in their ability to successfully utilize real-time feedback presented during quiet standing and treadmill walking tasks during a single data collection session in their medication-on state. During quiet standing tasks in which back angle feedback was provided, subjects were asked to utilize the feedback to maintain upright posture. During treadmill walking tasks, subjects walked at their self-selected speed for five minutes without feedback, with feedback of back angle, or with feedback of step length. During walking tasks with back angle feedback, subjects were asked to utilize the feedback to maintain upright posture. During walking tasks with step length feedback, subjects were asked to utilize the feedback to walk with increased step length. During quiet standing tasks, measurements of back angle were obtained; during walking tasks, measurements of back angle, step length, and step time were obtained.

Subjects stood and walked with significantly increased upright posture during the tasks with real-time back angle feedback compared to tasks without feedback. Similarly, subjects walked with significantly increased step length during tasks with real-time step length feedback compared to tasks without feedback. These results demonstrate that people with PD can utilize real-time feedback to improve upright posture and gait.
ContributorsJellish, Jeremy (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
150830-Thumbnail Image.png
Description
Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from

Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from where the disorder has originated. Designing advanced localization algorithms that can adapt to environmental changes is considered a significant shift from manual diagnosis which is based on the knowledge and observation of the doctor, to an adaptive and improved brain disorder diagnosis as these algorithms can track activities that might not be noticed by the human eye. An important consideration of these localization algorithms, however, is to try and minimize the overall power consumption in order to improve the study and treatment of brain disorders. This thesis considers the problem of estimating dynamic parameters of neural dipole sources while minimizing the system's overall power consumption; this is achieved by minimizing the number of EEG/MEG measurements sensors without a loss in estimation performance accuracy. As the EEG/MEG measurements models are related non-linearity to the dipole source locations and moments, these dynamic parameters can be estimated using sequential Monte Carlo methods such as particle filtering. Due to the large number of sensors required to record EEG/MEG Measurements for use in the particle filter, over long period recordings, a large amounts of power is required for storage and transmission. In order to reduce the overall power consumption, two methods are proposed. The first method used the predicted mean square estimation error as the performance metric under the constraint of a maximum power consumption. The performance metric of the second method uses the distance between the location of the sensors and the location estimate of the dipole source at the previous time step; this sensor scheduling scheme results in maximizing the overall signal-to-noise ratio. The performance of both methods is demonstrated using simulated data, and both methods show that they can provide good estimation results with significant reduction in the number of activated sensors at each time step.
ContributorsMichael, Stefanos (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012
154140-Thumbnail Image.png
Description
Olecranon fractures account for approximately 10% of upper extremity fractures and 95% of them require surgical fixation. Most of the clinical, retrospective and biomechanical studies have supported plate fixation over other surgical fixation techniques since plates have demonstrated low incidence of reoperation, high fixation stability and resumption of activities of

Olecranon fractures account for approximately 10% of upper extremity fractures and 95% of them require surgical fixation. Most of the clinical, retrospective and biomechanical studies have supported plate fixation over other surgical fixation techniques since plates have demonstrated low incidence of reoperation, high fixation stability and resumption of activities of daily living (ADL) earlier. Thus far, biomechanical studies have been helpful in evaluating and comparing different plate fixation constructs based on fracture stability. However, they have not provided information that can be used to design rehabilitation protocols such as information that relates load at the hand with tendon tension or load at the interface between the plate and the bone. The set-ups used in biomechanical studies have included simple mechanical testing machines that either measured construct stiffness by cyclic loading the specimens or construct strength by performing ramp load until failure. Some biomechanical studies attempted to simulate tendon tension but the in-vivo tension applied to the tendon remains unknown. In this study, a novel procedure to test the olecranon fracture fixation using modern olecranon plates was developed to improve the biomechanical understanding of failures and to help determine the weights that can be safely lifted and the range of motion (ROM) that should be performed during rehabilitation procedures.

Design objectives were defined based on surgeon's feedback and analysis of unmet needs in the area of biomechanical testing. Four pilot cadaveric specimens were prepared to run on an upper extremity feedback controller and the set-up was validated based on the design objectives. Cadaveric specimen preparation included a series of steps such as dissection, suturing and potting that were standardized and improved iteratively after pilot testing. Additionally, a fracture and plating protocol was developed and fixture lengths were standardized based on anthropometric data. Results from the early pilot studies indicated shortcomings in the design, which was then iteratively refined for the subsequent studies. The final pilot study demonstrated that all of the design objectives were met. This system is planned for use in future studies that will assess olecranon fracture fixation and that will investigate the safety of rehabilitation protocols.
ContributorsJain, Saaransh (Author) / Abbas, James (Thesis advisor) / LaBelle, Jeffrey (Thesis advisor) / Jacofsky, Marc (Committee member) / Arizona State University (Publisher)
Created2015
155981-Thumbnail Image.png
Description
Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in people with PD do not respond well to pharmaceutical and

Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in people with PD do not respond well to pharmaceutical and surgical treatments, novel rehabilitative therapies to alleviate these impairments are necessary. Many studies have confirmed that people with PD can improve their walking patterns when external cues are presented. Only a few studies have provided explicit real-time feedback on performance, but they did not report how well people with PD can follow the cues on a step-by-step basis. In a single-session study using a novel-treadmill based paradigm, our group had previously demonstrated that people with PD could follow step-length and back angle feedback and improve their gait and posture during treadmill walking. This study investigated whether a long-term (6-week, 3 sessions/week) real-time feedback training (RTFT) program can improve overground gait, upright posture, balance, and quality of life. Three subjects (mean age 70 ± 2 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were enrolled and participated in the program. The RTFT sessions involved walking on a treadmill while following visual feedback of step length and posture (one at any given time) displayed on a monitor placed in front of the subject at eye-level. The target step length was set between 110-120% of the step length obtained during a baseline non-feedback walking trial and the target back angle was set at the maximum upright posture exhibited during a quiet standing task. Two subjects were found to significantly improve their posture and overground walking at post-training and these changes were retained six weeks after RTFT (follow-up) and the third subject improved his upright posture and gait rhythmicity. Furthermore, the magnitude of the improvements observed in these subjects was greater than the improvements observed in reports on other neuromotor interventions. These results provide preliminary evidence that real-time feedback training can be used as an effective rehabilitative strategy to improve gait and upright posture in people with PD.
ContributorsBaskaran, Deepika (Author) / Krishnamurthi, Narayanan (Thesis advisor) / Abbas, James (Thesis advisor) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2017
154664-Thumbnail Image.png
Description
Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough of reaching those clinical milestones given their inconsistency in performance and reliability in long-term studies. In all the aforementioned applications, it is important to understand the limitations & demands posed by technology as well as biological processes. Recent advances in implantable Micro Electro Mechanical Systems (MEMS) technology have tremendous potential and opens a plethora of opportunities for long term studies which were not possible before. The overall goal of the project is to develop large scale autonomous, movable, micro-scale interfaces which can seek and monitor/stimulate large ensembles of precisely targeted neurons and neuronal networks that can be applied for brain mapping in behaving animals. However, there are serious technical (fabrication) challenges related to packaging and interconnects, examples of which include: lack of current industry standards in chip-scale packaging techniques for silicon chips with movable microstructures, incompatible micro-bonding techniques to elongate current micro-electrode length to reach deep brain structures, inability to achieve hermetic isolation of implantable devices from biological tissue and fluids (i.e. cerebrospinal fluid (CSF), blood, etc.). The specific aims are to: 1) optimize & automate chip scale packaging of MEMS devices with unique requirements not amenable to conventional industry standards with respect to bonding, process temperature and pressure in order to achieve scalability 2) develop a novel micro-bonding technique to extend the length of current polysilicon micro-electrodes to reach and monitor deep brain structures 3) design & develop high throughput packaging mechanism for constructing a dense array of movable microelectrodes. Using a combination of unique micro-bonding technique which involves conductive thermosetting epoxy’s with hermetically sealed support structures and a highly optimized, semi-automated, 90-minute flip-chip packaging process, I have now extended the repertoire of previously reported movable microelectrode arrays to bond conventional stainless steel and Pt/Ir microelectrode arrays of desired lengths to steerable polysilicon shafts. I tested scalable prototypes in rigorous bench top tests including Impedance measurements, accelerated aging and non-destructive testing to assess electrical and mechanical stability of micro-bonds under long-term implantation. I propose a 3D printed packaging method allows a wide variety of electrode configurations to be realized such as a rectangular or circular array configuration or other arbitrary geometries optimal for specific regions of the brain with inter-electrode distance as low as 25 um with an unprecedented capability of seeking and recording/stimulating targeted single neurons in deep brain structures up to 10 mm deep (with 6 μm displacement resolution). The advantage of this computer controlled moveable deep brain electrodes facilitates potential capabilities of moving past glial sheath surrounding microelectrodes to restore neural connection, counter the variabilities in signal amplitudes, and enable simultaneous recording/stimulation at precisely targeted layers of brain.
ContributorsPalaniswamy, Sivakumar (Author) / Muthuswamy, Jitendran (Thesis advisor) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2016
154603-Thumbnail Image.png
Description
The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when

The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when doing Sit-to-Stand (STS) movement: the postural symmetry in mediolateral direction. A symmetry score, calculated by the data obtained from a Kinect RGB-D camera, was proposed to reflect the mediolateral postural symmetry degree and was used to drive a real-time audio feedback designed in MAX/MSP to help users adjust themselves to perform their movement in a more symmetrical way during STS. The symmetry score was verified by calculating the Spearman correlation coefficient with the data obtained from Inertial Measurement Unit (IMU) sensor and got an average value at 0.732. Five healthy adults, four males and one female, with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment and the results showed that the low-cost Kinect-based system has the potential to train users to perform a more symmetrical movement in mediolateral direction during STS movement.
ContributorsZhou, Henghao (Author) / Turaga, Pavan (Thesis advisor) / Ingalls, Todd (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2016
155188-Thumbnail Image.png
Description
The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer

The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer is used for the study with the pulse characteristics of 57msec long train burst and duty cycle of 8% followed by an interrogative electrical stimulus varying from 30μsecs to 2msecs in pulse duration. The nerve excitability is determined by the compound action potential (CAP) amplitude evoked by a constant electrical stimulus. We observe that ultrasound's immediate effect on axons is to reduce the electrically evoked CAP amplitude and thereby suppressive in effect. However, a subsequent time delayed increased excitability was observed as reflected in the CAP amplitude of the nerve several tens of milliseconds later. This subsequent change from ultrasound induced nerve inhibition to increased excitability as a function of delay from ultrasound pulse application is unexpected and not predicted by typical nerve ion channel kinetic models. The recruitment curve of the sciatic nerve modified by ultrasound suggests the possibility of a fiber specific response where the ultrasound inhibits the faster fibers more than the slower ones. Also, changes in the shape of the CAP waveform when the nerve is under the inhibitive effect of ultrasound was observed. It is postulated that these effects can be a result of activation of stretch activation channels, mechanical sensitivity of the nerve to acoustic radiation pressure and modulation of ion channels by ultrasound.

The neuromodulatory capabilities of ultrasound in tandem with electrical stimulation has a significant potential for development of neural interfaces to peripheral nerve.
ContributorsChirania, Sanchit (Author) / Towe, Bruce (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2016
161773-Thumbnail Image.png
Description
Between 20%-30% of stroke survivors have foot drop. Foot drop is characterized by inadequate dorsiflexion required to clear the foot of the ground during the swing phase of gait, increasing the risk of stumbles and falls (Pouwels et al. 2009; Hartholt et al. 2011). External postural perturbations such as trips

Between 20%-30% of stroke survivors have foot drop. Foot drop is characterized by inadequate dorsiflexion required to clear the foot of the ground during the swing phase of gait, increasing the risk of stumbles and falls (Pouwels et al. 2009; Hartholt et al. 2011). External postural perturbations such as trips and slips are associated with high rate of falls in individuals with stroke (Forster et al. 1995). Falls often results in head, hip, and wrist injuries (Hedlund et al 1987; Parkkari et al. 1999). A critical response necessary to recover one’s balance and prevent a fall is the ability to evoke a compensatory step (Maki et al. 2003; Mansfield et al. 2013). This is the step taken to restore one’s balance and prevent a fall. However, this is difficult for stroke survivors with foot drop as normal gait is impaired and this translates to difficulty in evoking a compensatory step. To address both foot drop and poor compensatory stepping response, assistive devices such as the ankle-foot-orthosis (AFO) and functional electrical stimulator (FES) are generally prescribed to stroke survivors (Kluding et al. 2013; S. Whiteside et al. 2015). The use of these assistive devices improves walking speed, foot clearance, cadence, and step length of its users (Bethoux et al. 2014; Abe et al. 2009; Everaert et al. 2013; Alam et al. 2014). However, their impact on fall outcome in individuals with stroke in not well evaluated (Weerdesteyn et al. 2008). A recent study (Masood Nevisipour et al. 2019) where stroke survivors experienced a forward treadmill perturbation, mimicking a trip, reports that the impaired compensatory stepping response in stroke survivors in not due to the use of the assistive devices but to severe ankle impairments which these devices do not fully address. However, falls can also occur because of a slip. Slips constitute 40% of outdoor falls (Luukinen et al. 2000). In this study, results for fall rate and compensatory stepping response when subjects experience backward perturbations, mimicking slips, reveal that these devices do not impair the compensatory stepping response of its users.
ContributorsAnnan, Theophilus (Author) / Honeycutt, Claire (Thesis advisor) / Abbas, James (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2021