Matching Items (19)
Filtering by

Clear all filters

152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
151537-Thumbnail Image.png
Description
Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses

Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses on the study of sparse models and their interplay with modern machine learning techniques such as manifold, ensemble and graph-based methods, along with their applications in image analysis and recovery. By considering graph relations between data samples while learning sparse models, graph-embedded codes can be obtained for use in unsupervised, supervised and semi-supervised problems. Using experiments on standard datasets, it is demonstrated that the codes obtained from the proposed methods outperform several baseline algorithms. In order to facilitate sparse learning with large scale data, the paradigm of ensemble sparse coding is proposed, and different strategies for constructing weak base models are developed. Experiments with image recovery and clustering demonstrate that these ensemble models perform better when compared to conventional sparse coding frameworks. When examples from the data manifold are available, manifold constraints can be incorporated with sparse models and two approaches are proposed to combine sparse coding with manifold projection. The improved performance of the proposed techniques in comparison to sparse coding approaches is demonstrated using several image recovery experiments. In addition to these approaches, it might be required in some applications to combine multiple sparse models with different regularizations. In particular, combining an unconstrained sparse model with non-negative sparse coding is important in image analysis, and it poses several algorithmic and theoretical challenges. A convex and an efficient greedy algorithm for recovering combined representations are proposed. Theoretical guarantees on sparsity thresholds for exact recovery using these algorithms are derived and recovery performance is also demonstrated using simulations on synthetic data. Finally, the problem of non-linear compressive sensing, where the measurement process is carried out in feature space obtained using non-linear transformations, is considered. An optimized non-linear measurement system is proposed, and improvements in recovery performance are demonstrated in comparison to using random measurements as well as optimized linear measurements.
ContributorsNatesan Ramamurthy, Karthikeyan (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Karam, Lina (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
151544-Thumbnail Image.png
Description
Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it is important to design dictionaries that can model the entire data space and not just the samples considered. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. Theoretical aspects of learning such as algorithmic stability and generalization are considered, and ensemble learning is incorporated for effective large scale learning. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Using object recognition experiments on standard datasets it is shown that the proposed approaches outperform other sparse coding-based recognition frameworks. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Using sparse codes to define the relation between data samples can lead to a more robust graph embedding for unsupervised clustering. By performing discriminative embedding using sparse coding-based graphs, an algorithm for measuring the glomerular number in kidney MRI images is developed. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval.
ContributorsJayaraman Thiagarajan, Jayaraman (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152003-Thumbnail Image.png
Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
171607-Thumbnail Image.png
Description
Nearly one percent of the population over 65 years of age is living with Parkinson’s disease (PD) and this population worldwide is projected to be approximately nine million by 2030. PD is a progressive neurological disease characterized by both motor and cognitive impairments. One of the most serious challenges for

Nearly one percent of the population over 65 years of age is living with Parkinson’s disease (PD) and this population worldwide is projected to be approximately nine million by 2030. PD is a progressive neurological disease characterized by both motor and cognitive impairments. One of the most serious challenges for an individual as the disease progresses is the increasing severity of gait and posture impairments since they result in debilitating conditions such as freezing of gait, increased likelihood of falls, and poor quality of life. Although dopaminergic therapy and deep brain stimulation are generally effective, they often fail to improve gait and posture deficits. Several recent studies have employed real-time feedback (RTF) of gait parameters to improve walking patterns in PD. In earlier work, results from the investigation of the effects of RTF of step length and back angle during treadmill walking demonstrated that people with PD could follow the feedback and utilize it to modulate movements favorably in a manner that transferred, at least acutely, to overground walking. In this work, recent advances in wearable technologies were leveraged to develop a wearable real-time feedback (WRTF) system that can monitor and evaluate movements and provide feedback during daily activities that involve overground walking. Specifically, this work addressed the challenges of obtaining accurate gait and posture measures from wearable sensors in real-time and providing auditory feedback on the calculated real-time measures for rehabilitation. An algorithm was developed to calculate gait and posture variables from wearable sensor measurements, which were then validated against gold-standard measurements. The WRTF system calculates these measures and provides auditory feedback in real-time. The WRTF system was evaluated as a potential rehabilitation tool for use by people with mild to moderate PD. Results from the study indicated that the system can accurately measure step length and back angle, and that subjects could respond to real-time auditory feedback in a manner that improved their step length and uprightness. These improvements were exhibited while using the system that provided feedback and were sustained in subsequent trials immediately thereafter in which subjects walked without receiving feedback from the system.
ContributorsMuthukrishnan, Niveditha (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Shill, Holly A (Committee member) / Honeycutt, Claire (Committee member) / Turaga, Pavan (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2022
171875-Thumbnail Image.png
Description
Studies using transcranial direct current stimulation (tDCS) to enhance motor training areoften irreproducible. This may be partly due to differences in stimulation parameters across studies, but it is also plausible that uncontrolled placebo effects may interact with the true ‘treatment’ effect of tDCS. Thus, the purpose of this study was to test

Studies using transcranial direct current stimulation (tDCS) to enhance motor training areoften irreproducible. This may be partly due to differences in stimulation parameters across studies, but it is also plausible that uncontrolled placebo effects may interact with the true ‘treatment’ effect of tDCS. Thus, the purpose of this study was to test whether there was a placebo effect of tDCS on motor training and to identify possible mechanisms of such an effect. Fifty-one participants (age: 22.2 ± 4.16; 26 F) were randomly assigned to one of three groups: active anodal tDCS (n=18), sham tDCS (n=18), or no stimulation control (n=15). Participant expectations about how much tDCS could enhance motor function and their general suggestibility were assessed. Participants then completed 30 trials of functional upper extremity motor training with or without online tDCS. Stimulation (20-min, 2mA) was applied to the right primary motor cortex (C4) in a double-blind, sham-controlled fashion, while the control group was unblinded and not exposed to any stimulation. Following motor training, expectations about how much tDCS could enhance motor function were assessed again for participants in the sham and active tDCS groups only. Results showed no effect of active tDCS on motor training (p=.67). However, there was a significant placebo effect, such that the collapsed sham and active tDCS groups improved more during motor training than the control group (p=.02). This placebo effect was significantly influenced by post-training expectations about tDCS (p=.0004). Thus, this exploratory study showed that there is a measurable placebo effect of tDCS on motor training, likely driven by participants’ perceptions of whether they received stimulation. Future studies should consider placebo effects of tDCS and identify their underlying mechanisms in order to leverage them in clinical care.
ContributorsHAIKALIS, NICOLE (Author) / Schaefer, Sydney Y (Thesis advisor) / Honeycutt, Claire (Committee member) / Daliri, Ayoub (Committee member) / Arizona State University (Publisher)
Created2022
189237-Thumbnail Image.png
Description
Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004 and 2008. Globally, LBP occurrence increased by almost 200 million

Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004 and 2008. Globally, LBP occurrence increased by almost 200 million from 1990 to 2017. This problem is further implicated by physical and financial constraints that impact the individual’s quality of life. The medical cost exceeded $87.6 billion, and the lifetime prevalence was 84%. This indicates that the majority of people in the US will experience this symptom. Also, LBP limits Activities of Daily Living (ADL) and possibly affects the gait and postural stability. Prior studies indicated that LBP patients have slower gait speed and postural instability. To alleviate this symptom, the epidural injection is prescribed to treat pain and improve mobility function. To evaluate the effectiveness of LBP epidural injection intervention, gait and posture stability was investigated before and after the injection. While these factors are the fundamental indicator of LBP improvement, ADL is an element that needs to be significantly considered. The physical activity level depicts a person’s dynamic movement during the day, it is essential to gather activity level that supports monitoring chronic conditions, such as LBP, osteoporosis, and falls. The objective of this study was to assess the effects of Epidural Steroid Injection (ESI) on LBP and related gait and postural stability in the pre and post-intervention status. As such, the second objective was to assess the influence of ESI on LBP, and how it influences the participant’s ADL physical activity level. The results indicated that post-ESI intervention has significantly improved LBP patient’s gait and posture stability, however, there was insufficient evidence to determine the significant disparity in the physical activity levels. In conclusion, ESI depicts significant positive effects on LBP patients’ gait and postural parameters, however, more verification is required to indicate a significant effect on ADL physical activity levels.
ContributorsMoon, Seong Hyun (Author) / Lockhart, Thurmon (Thesis advisor) / Honeycutt, Claire (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Soangra, Rahul (Committee member) / Arizona State University (Publisher)
Created2023
156545-Thumbnail Image.png
Description
Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer,

Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer, despite of decades of behavioral evidence. Moreover, motor generalization is studied as a probe to understanding how movements in any novel situations are affected by previous experiences. Thus, one could assume that mechanisms underlying transfer from trained to untrained tasks may be same as the ones known to be underlying motor generalization. However, the direct relationship between transfer and generalization has not yet been shown, thereby limiting the assumption that transfer and generalization rely on the same mechanisms. The purpose of this study was to test whether there is a relationship between motor generalization and motor transfer. To date, ten healthy young adult subjects were scored on their motor generalization ability and motor transfer ability on various upper extremity tasks. Although our current sample size is too small to clearly identify whether there is a relationship between generalization and transfer, Pearson product-moment correlation results and a priori power analysis suggest that a significant relationship will be observed with an increased sample size by 30%. If so, this would suggest that the mechanisms of transfer may be similar to those of motor generalization.
ContributorsSohani, Priyanka (Author) / Schaefer, Sydney (Thesis advisor) / Daliri, Ayoub (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2018
154833-Thumbnail Image.png
Description
According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older adults, accounting for a large proportion of fractures, emergency department

According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older adults, accounting for a large proportion of fractures, emergency department visits, and urgent hospitalizations. The objective of this research was to identify and learn more about what factors affect balance using analysis techniques from nonlinear dynamics. Human balance and gait research traditionally uses linear or qualitative tests to assess and describe human motion; however, it is growing more apparent that human motion is neither a simple nor a linear task. In the 1990s Collins, first started applying stochastic processes to analyze human postural control system. Recently, Zakynthinaki et al. modeled human balance using the idea that humans will remain erect when perturbed until some boundary, or physical limit, is passed. This boundary is similar to the notion of basins of attraction in nonlinear dynamics and is referred to as the basin of stability. Human balance data was collected using dual force plates and Vicon marker position data for leans using only ankle movements and leans that were unrestricted. With this dataset, Zakynthinaki’s work was extended by comparing different algorithms used to create the critical curve (basin of stability boundary) that encloses the experimental data points as well as comparing the differences between the two leaning conditions.
ContributorsSmith, Victoria (Author) / Spano, Mark L (Thesis advisor) / Lockhart, Thurmon E (Thesis advisor) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2016
154603-Thumbnail Image.png
Description
The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when

The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when doing Sit-to-Stand (STS) movement: the postural symmetry in mediolateral direction. A symmetry score, calculated by the data obtained from a Kinect RGB-D camera, was proposed to reflect the mediolateral postural symmetry degree and was used to drive a real-time audio feedback designed in MAX/MSP to help users adjust themselves to perform their movement in a more symmetrical way during STS. The symmetry score was verified by calculating the Spearman correlation coefficient with the data obtained from Inertial Measurement Unit (IMU) sensor and got an average value at 0.732. Five healthy adults, four males and one female, with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment and the results showed that the low-cost Kinect-based system has the potential to train users to perform a more symmetrical movement in mediolateral direction during STS movement.
ContributorsZhou, Henghao (Author) / Turaga, Pavan (Thesis advisor) / Ingalls, Todd (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2016