Matching Items (7)
Filtering by

Clear all filters

153997-Thumbnail Image.png
Description
Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely

Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely challenging to detect small molecules. In this thesis, novel detection methods for molecular interactions are described.

First, a simple detection paradigm based on reflectance interferometry is developed. This method is simple, low cost and can be easily applied for protein array detection.

Second, a label-free charge sensitive optical detection (CSOD) technique is developed for detecting of both large and small molecules. The technique is based on that most molecules relevant to biomedical research and applications are charged or partially charged. An optical fiber is dipped into the well of a microplate. It detects the surface charge of the fiber, which does not decrease with the size (mass) of the molecule, making it particularly attractive for studying small molecules.

Third, a method for mechanically amplification detection of molecular interactions (MADMI) is developed. It provides quantitative analysis of small molecules interaction with membrane proteins in intact cells. The interactions are monitored by detecting a mechanical deformation in the membrane induced by the molecular interactions. With this novel method small molecules and membrane proteins interaction in the intact cells can be detected. This new paradigm provides mechanical amplification of small interaction signals, allowing us to measure the binding kinetics of both large and small molecules with membrane proteins, and to analyze heterogeneous nature of the binding kinetics between different cells, and different regions of a single cell.

Last, by tracking the cell membrane edge deformation, binding caused downstream event – granule secretory has been measured. This method focuses on the plasma membrane change when granules fuse with the cell. The fusion of granules increases the plasma membrane area and thus the cell edge expands. The expansion is localized at the vesicle release location. Granule size was calculated based on measured edge expansion. The membrane deformation due to the granule release is real-time monitored by this method.
ContributorsGuan, Yan (Author) / Tao, Nongjian (Thesis advisor) / LaBaer, Joshua (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2015
148104-Thumbnail Image.png
Description

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain as a loading control. The impact of normalizing data to a control condition, which is commonly done to align Western blot data distributed over several immunoblots, was also investigated. Specifically, this study addressed whether normalization to a small subset of distinct controls on each immunoblot increases pooled data variability compared to a larger set of controls. Protein expression data for NOX-2 and SOD-2 from a study investigating the protective role of the bradykinin type 1 receptor in angiotensin-II induced left ventricle remodeling were used to address these questions but are also discussed in the context of the original study. The comparison of GAPDH and Revert total protein stain as a loading control was done by assessing their correlation and comparing how they affected protein expression results. Additionally, the impact of treatment on GAPDH was investigated. To assess how normalization to different combinations of controls influences data variability, protein data were normalized to the average of 5 controls, the average of 2 controls, or an average vehicle and the results by treatment were compared. The results of this study demonstrated that GAPDH expression is not affected by angiotensin-II or bradykinin type 1 receptor antagonist R-954 and is a less sensitive loading control compared to Revert total protein stain. Normalization to the average of 5 controls tended to reduce pooled data variability compared to 2 controls. Lastly, the results of this study provided preliminary evidence that R-954 does not alter the expression of NOX-2 or SOD-2 to an expression profile that would be expected to explain the protection it confers against Ang-II induced left ventricle remodeling.

ContributorsSiegel, Matthew Marat (Author) / Jeremy, Mills (Thesis director) / Sweazea, Karen (Committee member) / Hale, Taben (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147801-Thumbnail Image.png
Description

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover,

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover, our lab found that DEX administration in-utero leads to a sex-specific increase in stress-induced tachycardia in female, but not male offspring. This project seeks to expand on this preliminary finding of the heart by examining local effectors of activity from the sympathetic system (tyrosine hydroxylase and catechol-o-methyltransferase). Tyrosine hydroxylase was measured as it catalyzes the rate limiting step of norepinephrine synthesis while catechol-O- methyltransferase was studied as it catalyzes the degradation of norepinephrine. Acetylcholinesterase was used to measure parasympathetic activity as it catalyzes the degradation of the primary neurotransmitter of the parasympathetic nervous system, acetylcholine. Analyses of sympathetic as well as parasympathetic activity were done to determine influences of in-utero DEX exposure on autonomic regulation in adulthood. Pregnant rats were administered DEX (0.4 mg/kg, i.p.) or vehicle (20% w/v 2-hydroxypropyl ß- cyclodextran) at gestation days 18-21, with euthanasia of offspring occurring at around the time the offspring reached 13-15 weeks of age. Left ventricles and right atria were pulverized, processed and subjected to western blot analysis to determine expression of proteins of interest. Males exposed to DEX in-utero saw a decrease in tyrosine hydroxylase expression in left ventricle and right atrium when compared to vehicle control, a difference not seen with females. In addition, catechol-o-methyltransferase expression was increased in right atria from male, but not female rats. Acetylcholinesterase expression was reduced in the right atria of female, but not male rats. The present findings suggest reduced norepinephrine signaling in the heart of male, but not female DEX-exposed offspring. Given that we have previously found that female, but not male rats exhibit exaggerated stress-induced tachycardia, our current findings suggest that males possess a sex-specific compensatory mechanism allowing the heart to resist increased sympathetic signaling from the brain, one that females do not possess. The underlying mechanics of this proposed mechanism are unclear, and further investigation is needed in this subject to determine the significance of the findings from our study.

ContributorsSharma, Arpan (Author) / Conrad, Cheryl (Thesis director) / Hale, Taben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Solid tumors advance from benign stage to a deadly metastatic state due to the complex interaction between cancer cells and tumor microenvironment (TME) including stromal cells and extracellular matrix (ECM). Multiple studies have demonstrated that ECM dysregulation is one of the critical hallmarks of cancer progression leading to formation of

Solid tumors advance from benign stage to a deadly metastatic state due to the complex interaction between cancer cells and tumor microenvironment (TME) including stromal cells and extracellular matrix (ECM). Multiple studies have demonstrated that ECM dysregulation is one of the critical hallmarks of cancer progression leading to formation of a desmoplastic microenvironment that participates in tumor progression. Cancer associated fibroblasts (CAFs) are the predominant stromal cell type that participates in desmoplasia by depositing matrix proteins and increasing ECM stiffness. Although the influence of matrix stiffness on enhanced tumorigenicity has been well studied, the biological understanding about the dynamic changes in ECM architecture and the role of cancer-stromal cell interaction on ECM remodeling is still limited.

In this dissertation, the primary goal was to develop a comprehensive cellular and molecular level understanding of ECM remodeling due to the interaction of breast tumor cells and CAFs. To that end, a novel three-dimensional (3D) high-density tumor-stroma model was fabricated in which breast tumor cells (MDA-MB-231 and MCF7) were spatially organized surrounded by CAF-embedded collagen-I hydrogel (Aim 1). Further the platform was integrated with atomic force microscopy to assess the dynamic changes in ECM composition and stiffness during active tumor invasion. The results established an essential role of crosstalk between breast tumor cells and CAFs in ECM remodeling. The studies were further extended by dissecting the mode of interaction between tumor cells and CAFs followed by characterization of the role of various tumor secreted factors on ECM remodeling (Aim 2). The results for the first time established a critical role of paracrine signaling between breast tumor cells and CAFs in modulating biophysical properties of ECM. More in-depth analysis highlighted the role of tumor secreted cytokines, specifically PDGF-AA/BB, on CAF-induced desmoplasia. In aim 3, the platform was further utilized to test the synergistic influence of anti-fibrotic drug (tranilast) in conjugation with chemotherapeutic drug (Doxorubicin) on desmoplasia and tumor progression in the presence of CAFs. Overall this dissertation provided an in-depth understanding on the impact of breast cancer-stromal cell interaction in modulating biophysical properties of the ECM and identified the crucial role of tumor secreted cytokines including PDGF-AA/BB on desmoplasia.
ContributorsSaini, Harpinder (Author) / Nikkhah, Mehdi (Thesis advisor) / Ros, Robert (Committee member) / LaBaer, Joshua (Committee member) / Kodibagkar, Vikram (Committee member) / Ebrahimkhani, Mohammad (Committee member) / Arizona State University (Publisher)
Created2019
171968-Thumbnail Image.png
Description
DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long

DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long processing time and are expensive. Here, a novel technique called Multiplexed Methylated DNA Immunoprecipitation Sequencing (Mx-MeDIP-Seq), which is amenable to automation. Up to 15 different samples can be combined into the same run of Mx-MeDIP-Seq, using only 25 ng of DNA per sample. Mx-MeDIP-Seq was used to study DNAm profiles of peripheral blood mononuclear cells (PBMCs) in two biologically distinct RNA viral infections with different modes of transmission, symptoms, and interaction with the host immune system: human immunodeficiency virus1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Analysis of 90 hospitalized patients with SARS-CoV-2 and 57 healthy controls revealed that SARS-CoV-2 infection led to alterations in 920 methylated regions in PBMCs, resulting in a change in transcription that affects host immune response and cell survival. Analysis of publicly available RNA-Sequencing data in COVID-19 correlated with DNAm in several key pathways. These findings provide a mechanistic view toward further understanding of viral infections. Genome-wide DNAm changes post HIV-1-infection from 37 chronically ill patients compared to 17 controls revealed dysregulation of the actin cytoskeleton, which could contribute to the establishment of latency in HIV-1 infections. Longitudinal DNAm analysis identified several potentially protective and harmful genes that could contribute to disease suppression or progression.
ContributorsRidha, Inam (Author) / LaBaer, Joshua (Thesis advisor) / Murugan, Vel (Thesis advisor) / Plaisier, Christopher (Committee member) / Nikkhah, Mehdi (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2022
Description
According to the World Health Organization, cancer is one of the leading causes of death around the world. Although early diagnostics using biomarkers and improved treatments with targeted therapy have reduced the rate of cancer related mortalities, there remain many unknowns regarding the contributions of the tumor microenvironment to cancer

According to the World Health Organization, cancer is one of the leading causes of death around the world. Although early diagnostics using biomarkers and improved treatments with targeted therapy have reduced the rate of cancer related mortalities, there remain many unknowns regarding the contributions of the tumor microenvironment to cancer progression and therapeutic resistance. The tumor microenvironment plays a significant role by manipulating the progression of cancer cells through biochemical and biophysical signals from the surrounding stromal cells along with the extracellular matrix. As such, there is a critical need to understand how the tumor microenvironment influences the molecular mechanisms underlying cancer metastasis to facilitate the discovery of better therapies. This thesis described the development of microfluidic technologies to study the interplay of cancer cells with their surrounding microenvironment. The microfluidic model was used to assess how exposure to chemoattractant, epidermal growth factor (EGF), impacted 3D breast cancer cell invasion and enhanced cell motility speed was noted in the presence of EGF validating physiological cell behavior. Additionally, breast cancer and patient-derived cancer-associated fibroblast (CAF) cells were co-cultured to study cell-cell crosstalk and how it affected cancer invasion. GPNMB was identified as a novel gene of interest and it was shown that CAFs enhanced breast cancer invasion by up-regulating the expression of GPNMB on breast cancer cells resulting in increased migration speed. Lastly, this thesis described the design, biological validation, and use of this microfluidic platform as a new in vitro 3D organotypic model to study mechanisms of glioma stem cell (GSC) invasion in the context of a vascular niche. It was confirmed that CXCL12-CXCR4 signaling is involved in promoting GSC invasion in a 3D vascular microenvironment, while also demonstrating the effectiveness of the microfluidic as a drug screening assay. Taken together, the broader impacts of the microfluidic model developed in this dissertation include, a possible alternative platform to animal testing that is focused on mimicking human physiology, a potential ex vivo platform using patient-derived cells for studying the interplay of cancer cells with its surrounding microenvironment, and development of future therapeutic strategies tailored toward disrupting key molecular pathways involved in regulatory mechanisms of cancer invasion.
ContributorsTruong, Danh, Ph.D (Author) / Nikkhah, Mehdi (Thesis advisor) / LaBaer, Joshua (Committee member) / Smith, Barbara (Committee member) / Mouneimne, Ghassan (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2018
166167-Thumbnail Image.png
Description

The 5-year survival rate for late-stage metastatic melanoma is only ~30%. A major reason for this low survival rate is that one of the most commonly mutated genes in melanoma, NRAS, has no FDA-approved targeted therapies. Because the RAS protein does not have any targeted therapies, patients with RAS mutant

The 5-year survival rate for late-stage metastatic melanoma is only ~30%. A major reason for this low survival rate is that one of the most commonly mutated genes in melanoma, NRAS, has no FDA-approved targeted therapies. Because the RAS protein does not have any targeted therapies, patients with RAS mutant tumors have an ongoing need for treatments that indirectly target RAS. This thesis project aims to identify expression and phosphorylation levels of proteins downstream of RAS in melanoma cell lines with the most common driver mutations. By analyzing the protein-level differences between these genetic mutants, we hope to identify additional indirect RAS protein targets for the treatment of NRAS mutant melanoma. RAS has several downstream effector proteins involved in oncogenic signaling pathways including FAK, Paxillin, AKT, and ERK. 5 melanoma cell lines (2 BRAF mutant, 2 NRAS mutant, and 1 designated wildtype) were analyzed using western bloting for FAK, Paxillin, AKT, and ERK phosphorylation and total expression levels. The results of western blot analysis showed that NRAS mutant cell lines had increased expression of phosphorylated Paxillin. Increased Paxillin phosphorylation corresponds to increased Paxillin binding at the FAT domain of FAK. Therefore, cell lines with increased FAK FAT – Paxillin interaction would be more sensitive to FAK FAT domain inhibition. The data presented provide an an explanation for the reduction in cell viability in NRAS mutant cell lines infected with Ad-FRNK. This information also has significant clinical relevance as researchers work to develop synthetic FAK FAT domain inhibitors, such as cyclic peptides. Additionally, cell lines with high levels of phosphorylated AKT showed a significant reduction in the amount of phosphorylated ERK. The identification of this inverse relationship may help to explain why BRAF and NRAS mutations are mutually exclusive. To conclude, NRAS mutant cell lines have increased expression of phosphorylated Paxillin and AKT which may explain why NRAS mutant cell lines are more sensitive to FAK FAT domain inhibition.

ContributorsSherwood, Nicole (Author) / Gould, Ian (Thesis director) / LaBaer, Joshua (Committee member) / Marlowe, Timothy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05