Matching Items (33)
Filtering by

Clear all filters

133847-Thumbnail Image.png
Description
With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.
ContributorsUwiringiyimana, Mahoro Marie Chantal (Author) / Vernon, Brent (Thesis director) / Nikkhah, Mehdi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171760-Thumbnail Image.png
Description
Encapsulation is a promising technology to deliver cell-based therapies to patients safely and with reduced need for immunosuppression. Macroencapsulation devices are advantageous due to their ease of retrieval, and thus enhanced safety profile, relative to microencapsulation techniques. A major challenge in macroencapsulation device design is ensuring sufficient oxygen transport to

Encapsulation is a promising technology to deliver cell-based therapies to patients safely and with reduced need for immunosuppression. Macroencapsulation devices are advantageous due to their ease of retrieval, and thus enhanced safety profile, relative to microencapsulation techniques. A major challenge in macroencapsulation device design is ensuring sufficient oxygen transport to encapsulated cells, requiring high surface area-to-volume device geometries. In this work, a hydrogel injection molding biofabrication method was modified to design and generate complex three-dimensional macroencapsulation devices that have greater complexity in the z-axis. The rheological properties of diverse hydrogels were evaluated and used to perform computational flow modeling within injection mold devices to evaluate pressure regimes suitable for cell viability. 3D printed device designs were evaluated for the reproducibility of hydrogel filling and extraction. This work demonstrated that injection molding biofabrication to construct complex three-dimensional geometries is feasible in pressure regimes consistent with preserving cell viability. Future work will evaluate encapsulated cell viability after injection molding.
ContributorsBrowning, Blake (Author) / Weaver, Jessica D (Thesis advisor) / Vernon, Brent (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2022
171984-Thumbnail Image.png
Description
Electrical stimulation of the human peripheral nervous system can be a powerful tool to treat various medical conditions and provide insight into nervous system processes. A critical challenge for many applications is to selectively activate neurons that have the desired effect while avoiding the activation of neurons that produce side

Electrical stimulation of the human peripheral nervous system can be a powerful tool to treat various medical conditions and provide insight into nervous system processes. A critical challenge for many applications is to selectively activate neurons that have the desired effect while avoiding the activation of neurons that produce side effects. To stimulate peripheral fibers, the longitudinal intrafascicular electrode (LIFE) targets small groups of fibers inside the fascicle using low-amplitude pulses and is well-suited for chronic use. This work aims to understand better the ability to use intrafascicular stimulation with LIFEs to activate small groups of neurons within a fascicle selectively.A hybrid workflow was developed to simulate: 1) the production/propagation of the electric field induced by the stimulation pulse and 2) the effect of the electric field on fiber activation (recruitment). To create efficient and robust strategies for the selective recruitment of axons, recognizing the effect of each parameter on their recruitment and activation pattern is essential. Thus, using this hybrid workflow, the effects of various factors such as fascicular anatomy, electrode parameters, and stimulation pulse parameters on recruitment have been characterized, and the sensitivity of the recruitment patterns to these parameters has been explored. Results demonstrated the potential advantages of specific stimulation strategies and the sensitivity of recruitment patterns to electrode placement and tissue properties. For example, it is demonstrated: the significant effect of endoneurium conductivities on threshold levels; that a configuration with a LIFE as a local ground can be used to deselect its surrounding axons; the advantages of changing the delay between pulses in dual monopolar stimulation in targeting different axons clusters and increasing the activation frequency of some axons; how monopolar and bipolar configurations can be used to enhance spatial selectivity; the effect of longitudinal displacement of axons, electrode length and electrode movement on the recruitment and the activation pattern. In summary, this work forms the foundation for developing stimulation strategies to enhance the selectivity that can be achieved with intrafascicular stimulation.
ContributorsRouhani, Morteza (Author) / Abbas, James J (Thesis advisor) / Crook, Sharon M (Thesis advisor) / Baer, Steven M (Committee member) / Sadleir, Rosalind (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2022
189287-Thumbnail Image.png
Description
Evolving knowledge about the tumor microenvironment (TME) is driving innovation in designing novel therapies against hard-to-treat breast cancer. Addressing the immune elements within the tumor microenvironment (TME) has emerged as a highly encouraging strategy for treating cancer. Although current immunotherapies have made advancements in reinstating the body's ability to fight

Evolving knowledge about the tumor microenvironment (TME) is driving innovation in designing novel therapies against hard-to-treat breast cancer. Addressing the immune elements within the tumor microenvironment (TME) has emerged as a highly encouraging strategy for treating cancer. Although current immunotherapies have made advancements in reinstating the body's ability to fight tumors, the search for effective cancer treatments to combat tumor evasion remains a formidable challenge. In line with this objective, there is a pressing need to better understand the complex tumor-immune dynamics and crosstalk within the TME. To evaluate the cancer-immune interaction, this study aimed at investigating the crosstalk between naïve macrophages and cytotoxic T cells in driving tumor progression using an organotypic 3D ex vivo tumor on-a-chip model. The presented microfluidic platform consists of two distinct regions namely: The tumor region and the stroma region separated by trapezoidal microposts to ensure interconnectivity between regions thereby incorporating high spatial organization. In the established triculture platform, the complex Tumor Immune Microenvironment was successfully recapitulated by incorporating naïve macrophage and T cells within an appropriate 3D matrix. Through invasion and morphometric analyses, definitive outcomes were obtained that underscore the significant contribution of macrophages in facilitating tumor progression. Furthermore, the inclusion of T cells led to a notable decrease in the migratory speed of cancer cells and macrophages, underscoring the reciprocal communication between these two immune cell populations in the regulation of tumor advancement. Overall, this study highlights the complexity of TME and underscores the critical role of immune cells in regulating cancer progression.
ContributorsManoharan, Twinkle Jina Minette (Author) / Nikkhah, Mehdi (Thesis advisor) / Acharya, Abhinav P (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2023
190947-Thumbnail Image.png
Description
Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of specific anatomical markers from CT, MPRAGE and cranial nerve imaging

Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of specific anatomical markers from CT, MPRAGE and cranial nerve imaging (CRANI) sequences, enabled successful tractography of patient-specific trajectory of the frontal, nasociliary, infraorbital, and mandibular nerve branches extending beyond the cisternal brain stem region and leading to the face. Performance of MPRAGE sequence together with the advanced T2-weighted CRANI sequence with and without a gadolinium contrast agent, was studied to characterize identification efficiency in smaller nerve structures in the extremities. A large FOV nerve visualization exam inclusive of the anatomy of all trigeminal nerve distal branches can be obtained within an acquisition time of 20 minutes using pre-contrast CRANI and MPRAGE. Post-processing with MPR and MIP images improved nerve visualization.Transcranial electrical stimulation techniques (TES) have been used for the treatment of multiple neurodegenerative diseases. These techniques involve placing electrodes on the scalp with multiple peripheral branches of the trigeminal nerve crossing directly under that may be stimulated. This was studied through hybrid computational realistic axon models. These models also facilitated studying the effects of electrode drift during experiments on the recruitment of peripheral nerves. An optimal point of lowest threshold was found while displacing the nerve horizontally i.e., the activation thresholds of both myelinated and unmyelinated axons increased when the electrodes were displaced medially and decreased to a certain extend when the electrodes were displaced laterally, after which further lateral displacement led to increase of thresholds. Inclusion of unmyelinated axons in the modeling provided the capability of finding maximum stimulation amplitude below which side effects like pain sensation may be avoided. In the case of F3 – F4 electrode montage the maximum amplitude was 2.39 mA and in case of RS – LS montage the maximum amplitude was 2.44 mA. Such modeling studies may be useful for personalization of TES devices for finding optimal positioning of electrodes with respect to target and stimulation amplitude range that minimizes side effects.
ContributorsSahu, Sulagna (Author) / Sadleir, Rosalind (Thesis advisor) / Tillery, Stephen H (Committee member) / Crook, Sharon (Committee member) / Beeman, Scott (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2023
190929-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) is the most powerful instrument for imaging anatomical structures. One of the most essential components of the MRI scanner is a radiofrequency (RF) coil. It induces resonant phenomena and receives the resonated RF signal from the body. Then, the signal is computed and reconstructed for MR

Magnetic resonance imaging (MRI) is the most powerful instrument for imaging anatomical structures. One of the most essential components of the MRI scanner is a radiofrequency (RF) coil. It induces resonant phenomena and receives the resonated RF signal from the body. Then, the signal is computed and reconstructed for MR images. Therefore, improving image quality by increasing the receiver's (Rx) efficiency is always remarkable. This research introduces a flexible and stretchable receive RF coil embedded in a dielectric-loaded material. Recent studies show that the adaptable coil can improve imaging quality by flexing and stretching to fit well with the sample's surface, reducing the spatial distance between the load and the coil. High permittivity dielectric material positioned between the coil and phantom was known to increase the RF field distribution's efficiency significantly. Recent studies integrating the high dielectric material with the coil show a significant improvement in signal-to-noise ratio (SNR), which can improve the overall efficiency of the coil. Previous research also introduced new elastic dielectric material, which shows improvement in uniformity when incorporated with an RF coil. Combining the adaptable RF coil with the elastic dielectric material has the potential to enhance the coil's performance further. The flexible dielectric material's limitations and unknown interaction with the coil pose a challenge. Thus, each component was integrated into a simple loop coil step-by-step, which allowed for experimentation and evaluation of the performance of each part. The mechanical performance was tested manually. The introduced coil is highly flexible and can stretch up to 20% of its original length in one direction. The electrical performance was evaluated in simulations and experiments on a 9.4T MRI scanner compared to conventional RF coils.
ContributorsHerabut, Chavalchart (Author) / Sohn, SungMin (Thesis advisor) / Sadleir, Rosalind (Committee member) / Beeman, Scott (Committee member) / Arizona State University (Publisher)
Created2023
190904-Thumbnail Image.png
Description
Allogeneic islet transplantation has the potential to reverse Type 1 Diabetes in patients. However, limitations such as chronic immunosuppression, islet donor numbers, and islet survival post-transplantation prevent the widespread application of allogeneic islet transplantation as the treatment of choice. Macroencapsulation devices have been widely used in allogeneic islet transplantation due

Allogeneic islet transplantation has the potential to reverse Type 1 Diabetes in patients. However, limitations such as chronic immunosuppression, islet donor numbers, and islet survival post-transplantation prevent the widespread application of allogeneic islet transplantation as the treatment of choice. Macroencapsulation devices have been widely used in allogeneic islet transplantation due to their capability to shield transplanted cells from the immune system as well as provide a supportive environment for cell viability, but macroencapsulation devices face oxygen transport challenges as their geometry increases from preclinical to clinical scales. The goal of this work is to generate complex 3D hydrogel macroencapsulation devices with sufficient oxygen transport to support encapsulated cell survival and generate these devices in a way that is accessible in the clinic as well as scaled manufacturing. A 3D-printed injection mold has been developed to generate hydrogel-based cell encapsulation devices with spiral geometries. The spiral geometry of the macroencapsulation device facilitates greater oxygen transport throughout the whole device resulting in improved islet function in vivo in a syngeneic rat model. A computational model of the oxygen concentration within macroencapsulation devices, validated by in vitro analysis, predicts that cells and islets maintain a greater viability and function in the spiral macroencapsulation device. To further validate the computational model, pO2 Reporter Composite Hydrogels (PORCH) are engineered to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the Proton Imaging of Siloxanes to map Tissue Oxygenation Levels (PISTOL) magnetic resonance imaging approach. Overall, a macroencapsulation device geometry designed via computational modeling of device oxygen gradients and validated with magnetic resonance (MR) oximetry imaging enhances islet function and survival for islet transplantation.
ContributorsEmerson, Amy (Author) / Weaver, Jessica (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Sadleir, Rosalind (Committee member) / Stabenfeldt, Sarah (Committee member) / Wang, Kuei-Chun (Committee member) / Arizona State University (Publisher)
Created2023
171968-Thumbnail Image.png
Description
DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long

DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long processing time and are expensive. Here, a novel technique called Multiplexed Methylated DNA Immunoprecipitation Sequencing (Mx-MeDIP-Seq), which is amenable to automation. Up to 15 different samples can be combined into the same run of Mx-MeDIP-Seq, using only 25 ng of DNA per sample. Mx-MeDIP-Seq was used to study DNAm profiles of peripheral blood mononuclear cells (PBMCs) in two biologically distinct RNA viral infections with different modes of transmission, symptoms, and interaction with the host immune system: human immunodeficiency virus1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Analysis of 90 hospitalized patients with SARS-CoV-2 and 57 healthy controls revealed that SARS-CoV-2 infection led to alterations in 920 methylated regions in PBMCs, resulting in a change in transcription that affects host immune response and cell survival. Analysis of publicly available RNA-Sequencing data in COVID-19 correlated with DNAm in several key pathways. These findings provide a mechanistic view toward further understanding of viral infections. Genome-wide DNAm changes post HIV-1-infection from 37 chronically ill patients compared to 17 controls revealed dysregulation of the actin cytoskeleton, which could contribute to the establishment of latency in HIV-1 infections. Longitudinal DNAm analysis identified several potentially protective and harmful genes that could contribute to disease suppression or progression.
ContributorsRidha, Inam (Author) / LaBaer, Joshua (Thesis advisor) / Murugan, Vel (Thesis advisor) / Plaisier, Christopher (Committee member) / Nikkhah, Mehdi (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2022
171798-Thumbnail Image.png
Description
The blood-brain-barrier (BBB) is a significant obstacle for treating many neurological disorders. Bubble-assisted focused ultrasound (BAFUS) medicated BBB disruption is a promising technology that enables the delivery of large drug doses at targeted locations across the BBB. However, the current lack of an in vitro model of this process hinders

The blood-brain-barrier (BBB) is a significant obstacle for treating many neurological disorders. Bubble-assisted focused ultrasound (BAFUS) medicated BBB disruption is a promising technology that enables the delivery of large drug doses at targeted locations across the BBB. However, the current lack of an in vitro model of this process hinders the full understanding of BAFUS BBB disruption for better translation into clinics. In this work, a US-transparent organ-on-chip device has been fabricated that can be critical for the in vitro modeling of the BAFUS BBB disruption. The transparency of the device window to focused ultrasound (FUS) was calculated theoretically and demonstrated by experiments. Nanobubbles were fabricated, characterized by cryogenic transmission electron microscopy (cryo-TEM), and showed bubble cavitation under FUS. Human colorectal adenocarcinoma (Caco-2) cells were used to form a good cellular barrier for BAFUS barrier disruption, as suggested by the measured permeability and transepithelial electrical resistance (TEER). Finally, barrier disruption and recovery were observed in BAFUS disrupted US-transparent organ-on-chips with Caco-2 barriers, showing great promise of the platform for future modeling BAFUS BBB disruption in vitro.
ContributorsAkkad, Adam Rifat (Author) / Gu, Jian (Thesis advisor) / Nikkhah, Mehdi (Thesis advisor) / Belohlavek, Marek (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
187363-Thumbnail Image.png
Description
Finite element models (FEMs) of spine segments validated in their intact states are often used to make predictions following structural modifications simulating surgical procedures, including posterior fusion with pedicle screws and rods (PSR) and laminectomy (removal of posterior column bone to decompress the spinal cord). The gold standard for spine

Finite element models (FEMs) of spine segments validated in their intact states are often used to make predictions following structural modifications simulating surgical procedures, including posterior fusion with pedicle screws and rods (PSR) and laminectomy (removal of posterior column bone to decompress the spinal cord). The gold standard for spine FEM validation compares predicted vs. experimental intervertebral ranges of motion (ROM). Given that muscle co-contraction compresses the spine, validation that considers compression may produce a more robust FEM. One research goal was to evaluate an experimental method of compressing a lumbar spine segment through its sagittal plane balance (pivot) point (BP) using a 6DOF robotic test system. Experimental data supported the hypothesis that structural modifications, such as PSR and laminectomy alter the segment’s BP location and its compressive stiffness. However, evaluation showed that the experimental BP method is sensitive to specimen posture in the robotic test frame; slight flexion or extension produced shear loads during compression that affect BP location and should be included in specimen-specific FEMs to ensure similar load conditions. Another goal was to develop a uniquely calibrated specimen-specific FEM of an intact L4-5 motion segment using the experimental BP data. A specimen-specific FEM was created and calibrated using experimental BP compressive stiffness data, however matching experimental BP location data was unsuccessful. The BP-compression calibrated FEM was evaluated by comparing predicted responses to loads following simulated PSR and laminectomy to specimen-specific experimental data. Predictions using the BP-calibrated and ROM-calibrated FEMs were compared. The BP-calibration process helped identify an unrealistic FEM disc geometry (nucleus pulposus size and location). Both BP-compression and ROM-calibrated FEMs predicted effects of PSR on stiffness (compressive and flexural) that were greater than experimental, which helped identify a problem with simplified representations of bone in the posterior column and at the anterior column interface. The BP-compression calibrated FEMs predicted relative shifts in BP locations and bone surface strains during compression that were closer to experimental data than similarly modified ROM-calibrated FEMs. Collectively, these results support the use of BP measures in experimental and model-based investigations of surgical modifications of the spine.
ContributorsSawa, Anna Genowefa Ulrika (Author) / Abbas, James (Thesis advisor) / Crawford, Neil R (Thesis advisor) / Kelly, Brian P (Committee member) / Helms-Tillery, Stephen (Committee member) / Sadleir, Rosalind (Committee member) / Arizona State University (Publisher)
Created2023