Matching Items (33)
Filtering by

Clear all filters

153963-Thumbnail Image.png
Description
There is a strong medical need and important therapeutic applications for improved wireless bioelectric interfaces to the nervous system. Multichannel devices are desired for neural control of robotic prosthetics that interface to remaining nerves in limb stumps of amputees and as alternatives to traditional wired arrays used in for some

There is a strong medical need and important therapeutic applications for improved wireless bioelectric interfaces to the nervous system. Multichannel devices are desired for neural control of robotic prosthetics that interface to remaining nerves in limb stumps of amputees and as alternatives to traditional wired arrays used in for some types of brain stimulation. This present work investigates a new approach to ultrasound-powering of implantable microelectronic devices within the tissue that may better support such applications. These devices are of ultra-miniature size that is enabled by a wireless technique. This study investigates two types of ultrasound-powered neural interfaces for multichannel sensory feedback in neurostimulation. The piezoceramics lead zirconate titanate (PZT) ceramic and polyvinylidene fluoride (PVDF) polymer were the primary materials used to build the devices. They convert ultrasound to electricity that when rectified by a diode produce a current output that is neuro stimulatory to peripheral nerve or the neurons in the brain. Multichannel devices employ a form of spatial multiplexing that directs focused ultrasound towards localized and segmented regions of PVDF or PZT that allows independent channels of nerve actuation. Different frequencies of ultrasound were evaluated for best results. Firstly, a 2.25 MHz frequency signal that is reasonably penetrating through body tissue to an implant several centimeters deep and also a 5 MHz frequency more suited to application for actuation of devices within a less than a centimeter of nerve. Results show multichannel device performance to have a complex inter-relationship with frequency, size and thickness, angular incidence, channel separations, and number of folds (layers connected in series and parallel). The output electrical port impedances of PVDF devices were examined in relationship to that of stimulating electrodes and tissue interfaces. Miniature multichannel devices were constructed using an unreported method of employing state of the art laser cutting systems. The results show that PVDF based devices have advantages over PZT, because of better acoustic coupling with tissue, known better biocompatibility, and better separation between multiple channels. However, the PZT devices proved to be better overall in terms of compactness and higher outputs for a given ultrasound power level.
ContributorsNanda Kumar, Yashwanth (Author) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2015
Description
Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential

Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential surgical complications. In this regard, there is an urgent need for developing new effective therapeutic strategies to induce regeneration and restore the loss contractility of infarcted myocardium. Over the past decades, regenerative medicine has emerged as a promising strategy to develop scaffold-free cell therapies and scaffold-based cardiac patches as potential approaches for MI treatment. Despite the progress, there are still critical shortcomings associated with these approaches regarding low cell retention, lack of global cardiomyocytes (CMs) synchronicity, as well as poor maturation and engraftment of the transplanted cells within the native myocardium. The overarching objective of this dissertation was to develop two classes of nanoengineered cardiac patches and scaffold-free microtissues with superior electrical, structural, and biological characteristics to address the limitations of previously developed tissue models. An integrated strategy, based on micro- and nanoscale technologies, was utilized to fabricate the proposed tissue models using functionalized gold nanomaterials (GNMs). Furthermore, comprehensive mechanistic studies were carried out to assess the influence of conductive GNMs on the electrophysiology and maturity of the engineered cardiac tissues. Specifically, the role of mechanical stiffness and nano-scale topographies of the scaffold, due to the incorporation of GNMs, on cardiac cells phenotype, contractility, and excitability were dissected from the scaffold’s electrical conductivity. In addition, the influence of GNMs on conduction velocity of CMs was investigated in both coupled and uncoupled gap junctions using microelectrode array technology. Overall, the key contributions of this work were to generate new classes of electrically conductive cardiac patches and scaffold-free microtissues and to mechanistically investigate the influence of conductive GNMs on maturation and electrophysiology of the engineered tissues.
ContributorsNavaei, Ali (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Migrino, Raymond Q. (Committee member) / Stabenfeldt, Sarah (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2018
156803-Thumbnail Image.png
Description
Severe cases of congenital heart defect (CHD) require surgeries to fix the structural problem, in which artificial grafts are often used. Although outcome of surgeries has improved over the past decades, there remains to be patients who require re-operations due to graft-related complications and the growth of patients which results

Severe cases of congenital heart defect (CHD) require surgeries to fix the structural problem, in which artificial grafts are often used. Although outcome of surgeries has improved over the past decades, there remains to be patients who require re-operations due to graft-related complications and the growth of patients which results in a mismatch in size between the patient’s anatomy and the implanted graft. A graft in which cells of the patient could infiltrate, facilitating transformation of the graft to a native-like tissue, and allow the graft to grow with the patient heart would be ideal. Cardiac tissue engineering (CTE) technologies, including extracellular matrix (ECM)-based hydrogels has emerged as a promising approach for the repair of cardiac damage. However, most of the previous studies have mainly focused on treatments for ischemic heart disease and related heart failure in adults, therefore the potential of CTE for CHD treatment is underexplored. In this study, a hybrid hydrogel was developed by combining the ECM derived from cardiac tissue of pediatric CHD patients and gelatin methacrylate (GelMA). In addition, the influence of incorporating gold nanorods (GNRs) within the hybrid hydrogels was studied. The functionalities of the ECM-GelMA-GNR hydrogels as a CTE scaffold were assessed by culturing neonatal rat cardiomyocytes on the hydrogel. After 8 days of cell culture, highly organized sarcomeric alpha-actinin structures and connexin 43 expression were evident in ECM- and GNR-incorporated hydrogels compared to pristine GelMA hydrogel, indicating cell maturation and formation of cardiac tissue. The findings of this study indicate the promising potential of ECM-GelMA-GNR hybrid hydrogels as a CTE approach for CHD treatment.

As another approach to improve CHD treatment, this study sought the possibility of performing a proteomic analysis on cardiac ECM of pediatric CHD patient tissue. As the ECM play important roles in regulating cell signaling, there is an increasing interest in studying the ECM proteome and the influences caused by diseases. Proteomics on ECM is challenging due to the insoluble nature of ECM proteins which makes protein extraction and digestion difficult. In this study, as a first step to perform proteomics, optimization on sample preparation procedure was attempted.
ContributorsSugamura, Yuka (Author) / Nikkhah, Mehdi (Thesis advisor) / Smith, Barbara (Committee member) / Willis, Brigham (Committee member) / Arizona State University (Publisher)
Created2018
136526-Thumbnail Image.png
Description
The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections

The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections examine reasons and methods for the oboe's invention, as well as possible causes of its migration from its starting place in France to other European countries, as well as many other places around the world. I conclude that the oboe was invented to suit the needs of composers in the court of Louis XIV, and that it was brought to other countries by French performers who left France for many reasons, including to escape from the authority of composer Jean-Baptiste Lully and in some cases to promote French culture in other countries.
ContributorsCook, Mary Katherine (Author) / Schuring, Martin (Thesis director) / Micklich, Albie (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor)
Created2015-05
133847-Thumbnail Image.png
Description
With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.
ContributorsUwiringiyimana, Mahoro Marie Chantal (Author) / Vernon, Brent (Thesis director) / Nikkhah, Mehdi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137120-Thumbnail Image.png
Description
Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be

Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be addressed. As such, this paper provides an overview of the effects of biomedical technology in science fiction films. The discussions in this paper will analyze the different portrayals of the technology in the viewed cinematic pieces and the effects they have on the characters in the film. The discussion will begin with the films that have technology based in Genetic Engineering. This will then be followed by a discussion of the biomedical technology based in the fields of Endocrinology; Reanimation; Preservation; Prosthetics; Physical Metamorphosis; Super-Drugs and Super-Viruses; and Diagnostic, Surgical, and Monitoring Equipment. At the end of this paper movie summaries are provided to assist in clarifying plot details.
ContributorsGrzybowski, Amanda Ann (Author) / Foy, Joseph (Thesis director) / Facinelli, Diane (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133444-Thumbnail Image.png
Description
Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing

Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing Remak fibers using osmium tetroxide staining and imaging with the help of transmission electron microscopy. Using this method, nerves had various electrical stimuli attached to them and were analyzed as such. They were analyzed with a cuff electrode attached, a stimulator attached, and both, with images taken at the center of the nerve and the ends of them. The number and area taken by the Remak fibers were analyzed, along with the g-ratios of the Group A and B fibers. These were analyzed to help deduce the overall health of the fibers along with vacuolization, and mitochondria available. While some important information was gained from this evaluation, further testing has to be done to improve the myelin detection system, along with analyzing the proper and necessary Remak fibers and the role they play. The research tries to thoroughly look at the necessary material and find a way to use it as a guide to further experimentation with electrical stimuli, and notes the differences found within and without various groups, various points of observation, and various stimuli as a whole. Nevertheless, this research allows a strong look into the benefits of transmission electron microscopy and the ability to assess electrical stimulation from these points.
ContributorsNambiar, Karthik (Author) / Muthuswamy, Jitendran (Thesis director) / Towe, Bruce (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Cardiac tissue engineering has major applications in regenerative medicine, disease modeling and fundamental biological studies. Despite the significance, numerous questions still need to be explored to enhance the functionalities of the engineered tissue substitutes. In this study, three dimensional (3D) cardiac micro-tissues were developed through encapsulating co-culture of cardiomyocytes and

Cardiac tissue engineering has major applications in regenerative medicine, disease modeling and fundamental biological studies. Despite the significance, numerous questions still need to be explored to enhance the functionalities of the engineered tissue substitutes. In this study, three dimensional (3D) cardiac micro-tissues were developed through encapsulating co-culture of cardiomyocytes and cardiac fibroblasts, as the main cellular components of native myocardium, within photocrosslinkable gelatin-based hydrogels. Different co-culture ratios were assessed to optimize the functional properties of constructs. The geometry of the micro-tissues was precisely controlled using micro-patterning techniques in order to evaluate their role on synchronous contraction of the cells. Cardiomyocytes exhibited a native-like phenotype when co-cultured with cardiac fibroblasts as compared to the mono-culture condition. Particularly, elongated F-actin fibers with abundance of sarcomeric α-actinin and troponin-I were observed within all layers of the hydrogel constructs. Higher expressions of connexin-43 and integrin β1 indicated improved cell-cell and cell-matrix interactions. Amongst co-culture conditions, 2:1 (cardiomyocytes: cardiac fibroblasts) ratio exhibited enhanced functionalities, whereas decreasing the construct size adversely affected the synchronous contraction of the cells. Therefore, this study indicated that cell-cell ratio as well as the geometrical features of the micropatterned constructs are among crucial parameters, which need to be optimized in order to enhance the functionalities of engineered tissue substitutes and cardiac patches.
ContributorsSaini, Harpinder (Author) / Nikkhah, Mehdi (Thesis advisor) / Vernon, Brent (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2015
154728-Thumbnail Image.png
Description
Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem cells (hPSCs) can proliferate extensively and differentiate into the various

Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem cells (hPSCs) can proliferate extensively and differentiate into the various neuronal subtypes and supporting cells that comprise the CNS. As such, hNPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine applications. However, the use hNPCs for the study and treatment of neurological diseases requires the development of defined, robust, and scalable methods for their expansion and neuronal differentiation. To that end a rational design process was used to develop a vitronectin-derived peptide (VDP)-based substrate to support the growth and neuronal differentiation of hNPCs in conventional two-dimensional (2-D) culture and large-scale microcarrier (MC)-based suspension culture. Compared to hNPCs cultured on ECMP-based substrates, hNPCs grown on VDP-coated surfaces displayed similar morphologies, growth rates, and high expression levels of hNPC multipotency markers. Furthermore, VDP surfaces supported the directed differentiation of hNPCs to neurons at similar levels to cells differentiated on ECMP substrates. Here it has been demonstrated that VDP is a robust growth and differentiation matrix, as demonstrated by its ability to support the expansions and neuronal differentiation of hNPCs derived from three hESC (H9, HUES9, and HSF4) and one hiPSC (RiPSC) cell lines. Finally, it has been shown that VDP allows for the expansion or neuronal differentiation of hNPCs to quantities (>1010) necessary for drug screening or regenerative medicine purposes. In the future, the use of VDP as a defined culture substrate will significantly advance the clinical application of hNPCs and their derivatives as it will enable the large-scale expansion and neuronal differentiation of hNPCs in quantities necessary for disease modeling, drug screening, and regenerative medicine applications.
ContributorsVarun, Divya (Author) / Brafman, David (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2016
154575-Thumbnail Image.png
Description
The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells

The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) could provide new insight into disease mechanisms. Although protocols to differentiate hiPSCs and hESCs to neurons have been established, standard practice relies on two dimensional (2D) cell culture systems, which do not accurately mimic the complexity and architecture of the in vivo brain microenvironment.

I have developed protocols to generate 3D cultures of neurons from hiPSCs and hESCs, to provide more accurate models of AD. In the first protocol, hiPSC-derived neural progenitor cells (hNPCs) are plated in a suspension of Matrigel™ prior to terminal differentiation of neurons. In the second protocol, hiPSCs are forced into aggregates called embryoid bodies (EBs) in suspension culture and subsequently directed to the neural lineage through dual SMAD inhibition. Culture conditions are then changed to expand putative hNPC populations and finally differentiated to neuronal spheroids through activation of the tyrosine kinase pathway. The gene expression profiles of the 3D hiPSC-derived neural cultures were compared to fetal brain RNA. Our analysis has revealed that 3D neuronal cultures express high levels of mature pan-neuronal markers (e.g. MAP2, β3T) and neural transmitter subtype specific markers. The 3D neuronal spheroids also showed signs of neural patterning, similar to that observed during embryonic development. These 3D culture systems should provide a platform to probe disease mechanisms of AD and enable to generation of more advanced therapeutics.
ContributorsPetty, Francis (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2016