Matching Items (4)
Filtering by

Clear all filters

151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
149306-Thumbnail Image.png
Description
Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field measurements. However, the challenge to using these methods in assessing

Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field measurements. However, the challenge to using these methods in assessing field measurements is their ability to accurately estimate stability in the presence of noise. In this thesis a new method is developed which estimates the modal content of simulated and actual field measurements using orthogonal polynomials and the results are compared to other commonly used estimators. This new method estimates oscillatory performance by fitting an associate Hermite polynomial to time domain data and extrapolating its spectrum to identify small signal power system frequencies. Once the frequencies are identified, damping assessment is performed using a modified sliding window technique with the use of linear prediction (LP). Once the entire assessment is complete the measurements can be judged to be stable or unstable. Collectively, this new technique is known as the associate Hermite expansion (AHE) algorithm. Validation of the AHE method versus results from four other spectral estimators demonstrates the method's accuracy and modal estimation ability with and without the presence of noise. A Prony analysis, a Yule-Walker autoregressive algorithm, a second sliding window estimator and the Hilbert-Huang Transform method are used in comparative assessments in support of this thesis. Results from simulated and actual field measurements are used in the comparisons, as well as artificially generated simple signals. A search for actual field testing results performed by a utility was undertaken and a request was made to obtain the measurements of a brake insertion test. Comparison results show that the AHE method is accurate as compared to the other commonly used spectral estimators and its predictive capability exceeded the other estimators in the presence of Gaussian noise. As a result, the AHE method could be employed in areas including operations and planning analysis, post-mortem analysis, power system damping scheme design and other analysis areas.
ContributorsKokanos, Barrie Lee (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald (Committee member) / Farmer, Richard G (Committee member) / Ayyanar, Raja (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2010
149313-Thumbnail Image.png
Description
Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image

Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image segmentation approach is proposed in this thesis to tackle most of the challenges in the existing multi-region segmentation methods, including computational complexity and sensitivity to initialization. Medical image analysis helps in understanding biological processes and disease pathologies. In this thesis, two cell evolution analysis schemes are proposed for cell cluster extraction in order to analyze cell migration, cell proliferation, and cell dispersion in different cancer cell images. The proposed schemes accurately segment both the cell cluster area and the individual cells inside and outside the cell cluster area. The method is currently used by different cell biology labs to study the behavior of cancer cells, which helps in drug discovery. Defects can cause failure to motherboards, processors, and semiconductor units. An automatic defect detection and classification methodology is very desirable in many industrial applications. This helps in producing consistent results, facilitating the processing, speeding up the processing time, and reducing the cost. In this thesis, three defect detection and classification schemes are proposed to automatically detect and classify different defects related to semiconductor unit images. The first proposed defect detection scheme is used to detect and classify the solder balls in the processor sockets as either defective (Non-Wet) or non-defective. The method produces a 96% classification rate and saves 89% of the time used by the operator. The second proposed defect detection scheme is used for detecting and measuring voids inside solder balls of different boards and products. The third proposed defect detection scheme is used to detect different defects in the die area of semiconductor unit images such as cracks, scratches, foreign materials, fingerprints, and stains. The three proposed defect detection schemes give high accuracy and are inexpensive to implement compared to the existing high cost state-of-the-art machines.
ContributorsSaid, Asaad F (Author) / Karam, Lina (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Patel, Nital (Committee member) / Arizona State University (Publisher)
Created2010
155174-Thumbnail Image.png
Description
Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic.

This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to bring the sensors in contact with a subject. Based on skin color change, photoplethysmogram (PPG) waveform is recorded, from which heart rate and pulse transit time are obtained. Using a dual-wavelength illumination and triggered camera control system, blood oxygen saturation level is captured. By monitoring shoulder movement using differential imaging processing method, respiratory information is acquired, including breathing rate and breathing volume. Ballistocardiogram (BCG) is obtained based on facial feature detection and motion tracking. Blood pressure is further calculated from simultaneously recorded PPG and BCG, based on the time difference between these two waveforms.

The developed methods have been validated by comparisons against reference devices and through pilot studies. All of the aforementioned measurements are conducted without any physical contact between sensors and subjects. The work presented herein provides alternative solutions to track one’s health and wellness under normal living condition.
ContributorsShao, Dangdang (Author) / Tao, Nongjian (Thesis advisor) / Li, Baoxin (Committee member) / Hekler, Eric (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2016