Matching Items (5)
Filtering by

Clear all filters

151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
171476-Thumbnail Image.png
Description
Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under device under test (DUT) is a fluorescence based lateral flow

Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under device under test (DUT) is a fluorescence based lateral flow assay (LFA) point-of-care (POC) device. This work’s contributions are: firmware and software development, calibration routine implementation, device performance characterization and a proposed method of in-software fault detection. Firmware was refactored from the original implementation of the POC fluorescence reader to expose an application programming interface (API) via USB. Companion software available for desktop environments (Windows, Mac and Linux) was created to interface with this firmware API and conduct macro level routines to request and receive fluorescence data while presenting a user-friendly interface to clinical technicians. Lastly, an environmental chamber was constructed to conduct sequential diagnostic reads in order to observe sensor drift and other deviations that might present themselves in real-world usage. The results from these evaluations show a standard deviation of less than 1% in fluorescence readings in nominal temperature environments (approx. 25C) suggesting that this system will have a favorable signal-to-noise (SNR) ratio in such a setting. In non-ideal over heated environments (≥38C), the evaluation results showed performance degradation with standard deviations as large as 15%.
ContributorsLue Sang, Christopher David (Author) / Blain Christen, Jennifer M (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Raupp, Gregory (Committee member) / Arizona State University (Publisher)
Created2022
155924-Thumbnail Image.png
Description
Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices

Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices and to verify the qualifications of a product is met. The calibration process for capacitive MEMS devices, for the most part, entails the determination of the mechanical sensitivity. In this work, a physical-stimulus-free built-in-self-test (BIST) integrated circuit (IC) design characterizing the sensitivity of capacitive MEMS accelerometers is presented. The BIST circuity can extract the amplitude and phase response of the acceleration sensor's mechanics under electrical excitation within 0.55% of error with respect to its mechanical sensitivity under the physical stimulus. Sensitivity characterization is performed using a low computation complexity multivariate linear regression model. The BIST circuitry maximizes the use of existing analog and mixed-signal readout signal chain and the host processor core, without the need for computationally expensive Fast Fourier Transform (FFT)-based approaches. The BIST IC is designed and fabricated using the 0.18-µm CMOS technology. The sensor analog front-end and BIST circuitry are integrated with a three-axis, low-g capacitive MEMS accelerometer in a single hermetically sealed package. The BIST circuitry occupies 0.3 mm2 with a total readout IC area of 1.0 mm2 and consumes 8.9 mW during self-test operation.
ContributorsOzel, Muhlis Kenan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2017
158689-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they

Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they must be calibrated again using physical calibration technique, which is an expensive process to conduct. However, these sensors can also be calibrated infield by applying an on-chip electrical stimulus to the sensor. Electrical stimulus-based calibration could bring the cost of testing and calibration significantly down as compared to factory testing. In this thesis, simulations are presented to formulate a statistical prediction model based on an electrical stimulus. Results from two different approaches of electrical calibration have been discussed. A prediction model with a root mean square error of 1% has been presented in this work. Experiments were conducted on commercially available accelerometers to test the techniques used for simulations.
ContributorsBassi, Ishaan (Author) / Ozev, Sule (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020
161729-Thumbnail Image.png
Description
Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small

Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small spherical magnetic particles called magnetic beads are often used in laboratories. Even though magnetic beads have the ability to isolate DNA or RNA from bio-samples in their purified form, integrating these into a microfluidic point-of-need testing kit is still a bit of a challenge. In this thesis, the possibility of integrating paramagnetic beads instead of silica-coated dynabeads, has been evaluated with respect to a point-of-need SARS-CoV-2 virus testing kit. This project is a comparative study between five different sizes of carboxyl-coated paramagnetic beads with reference to silica-coated dynabeads, and how each of them behave in a microcapillary chip in presence of magnetic fields of different strengths. The diameters and velocities of the beads have been calculated using different types of microscopic imaging techniques. The washing and elution steps of an extraction process have been recreated using syringe pump, microcapillary channels and permanent magnets, based on which those parameters of the beads have been studied which are essential for extraction behaviour. The yield efficiency of the beads have also been analysed by using these to extract Salmon DNA. Overall, furthering this research will improve the sensitivity and specificity for any low-cost nucleic-acid based point-of-care testing device.
ContributorsBiswas, Shilpita (Author) / Christen, Jennifer B (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021