Matching Items (15)
Filtering by

Clear all filters

157420-Thumbnail Image.png
Description
The research question explored in this thesis is how CRISPR mediated editing is influenced by artificially opened chromatin in cells. Closed chromatin poses a barrier to Cas9 binding and editing at target genes. Synthetic pioneer factors (PFs) are a promising new approach to artificially open condensed heterochromatin allowing greater access

The research question explored in this thesis is how CRISPR mediated editing is influenced by artificially opened chromatin in cells. Closed chromatin poses a barrier to Cas9 binding and editing at target genes. Synthetic pioneer factors (PFs) are a promising new approach to artificially open condensed heterochromatin allowing greater access of target DNA to Cas9. The Haynes lab has constructed fusions of enzymatic chromatin-modifying domains designed to remodel chromatin and increase Cas9 editing efficiency. With a library of PFs available, this research focuses on analyzing the behavior of Cas9 in chromatin that has been artificially opened by PFs. The types and frequency of INDELs (insertions & deletions) were determined after non-homologous end joining (NHEJ) in PF and Cas9-treated cells using quantitative Sanger sequencing and Synthego’s ICE software. Furthermore, NOME-seq analysis was carried out to map nucleosome position in PF and Cas9 treated cells. Although this experiment was unsuccessful, the heat map generated with data obtained from Synthego ICE predicts a possible presence of nucleosome in the vicinity suggesting that perhaps a fully open chromatin state was not achieved. Linear Regression analysis with certain assumptions confirms that with the increase in distance downstream of cut-site, the editing frequency decreases exponentially. Nevertheless, further experimental work should be carried out to investigate this hypothesis.
ContributorsHamna, Syeda Fatima (Author) / Haynes, Karmella A (Thesis advisor) / Stabenfeldt, Sarah (Thesis advisor) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2019
156522-Thumbnail Image.png
Description
One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels

One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels across time. In recent years, olfactory sensing has emerged as a promising diagnostic tool for its potential for real-time, non-invasive monitoring. This technology has been proven promising in the areas of oncology, diabetes, and neurological disorders. Little work, however, has addressed the use of olfactory sensing with respect to female fertility. In this work, we perform a study on ten healthy female subjects to determine the volatile signature in biological samples across 28 days, correlating to fertility hormones. Volatile organic compounds (VOCs) present in the air above the biological sample, or headspace, were collected by solid phase microextraction (SPME), using a 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coated fiber. Samples were analyzed, using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A regression model was used to identify key analytes, corresponding to the fertility hormones estrogen and progesterone. Results indicate shifts in volatile signatures in biological samples across the 28 days, relevant to hormonal changes. Further work includes evaluating metabolic changes in volatile hormone expression as an early indicator of declining fertility, so women may one day be able to monitor their reproductive health in real-time as they age.
ContributorsOng, Stephanie (Author) / Smith, Barbara (Thesis advisor) / Bean, Heather (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
168426-Thumbnail Image.png
Description
Placental pregnancy is a biological scenario where tissue types bearing different antigen signatures co-exist within the same microenvironment without rejection. Placental trophoblast cells locally modulate the immune system in pregnancy, and one process through which this occurs is through the release of a class of nano-scaled extracellular vesicles called exosomes.

Placental pregnancy is a biological scenario where tissue types bearing different antigen signatures co-exist within the same microenvironment without rejection. Placental trophoblast cells locally modulate the immune system in pregnancy, and one process through which this occurs is through the release of a class of nano-scaled extracellular vesicles called exosomes. The aim is to use these placental-derived immunomodulatory exosomes as a therapeutic and engineer a means to deliver these exosomes using a hydrogel vehicle. As such, two representative trophoblast cell lines, JAR and JEG-3, were used as exosome sources. First step involved the evaluation of the morphological and proteomic characterization of the isolated exosomes through dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM) imaging, and mass spectrometry (MS) analysis. Following exosome characterization, incorporation of exosomes within hydrogel matrices like polyethylene glycol and alginate to determine their release profile over a timescale of 14 days was performed. Comparing the release between the two cell lines isolated exosomes, no discernible difference is observed in their release, and release appears complete within two days. Future studies will evaluate the impact of exosome loadings and hydrogel modification on exosome release profiles, as well as their influence on immune cells.
ContributorsHiremath, Shivani Chandrashekher Swamy (Author) / Weaver, Jessica D (Thesis advisor) / Plaisier, Christopher (Committee member) / Wang, Kuei-Chun (Committee member) / Arizona State University (Publisher)
Created2021
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
171968-Thumbnail Image.png
Description
DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long

DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long processing time and are expensive. Here, a novel technique called Multiplexed Methylated DNA Immunoprecipitation Sequencing (Mx-MeDIP-Seq), which is amenable to automation. Up to 15 different samples can be combined into the same run of Mx-MeDIP-Seq, using only 25 ng of DNA per sample. Mx-MeDIP-Seq was used to study DNAm profiles of peripheral blood mononuclear cells (PBMCs) in two biologically distinct RNA viral infections with different modes of transmission, symptoms, and interaction with the host immune system: human immunodeficiency virus1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Analysis of 90 hospitalized patients with SARS-CoV-2 and 57 healthy controls revealed that SARS-CoV-2 infection led to alterations in 920 methylated regions in PBMCs, resulting in a change in transcription that affects host immune response and cell survival. Analysis of publicly available RNA-Sequencing data in COVID-19 correlated with DNAm in several key pathways. These findings provide a mechanistic view toward further understanding of viral infections. Genome-wide DNAm changes post HIV-1-infection from 37 chronically ill patients compared to 17 controls revealed dysregulation of the actin cytoskeleton, which could contribute to the establishment of latency in HIV-1 infections. Longitudinal DNAm analysis identified several potentially protective and harmful genes that could contribute to disease suppression or progression.
ContributorsRidha, Inam (Author) / LaBaer, Joshua (Thesis advisor) / Murugan, Vel (Thesis advisor) / Plaisier, Christopher (Committee member) / Nikkhah, Mehdi (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2022
157806-Thumbnail Image.png
Description
The WNT signaling pathway plays numerous roles in development and maintenance of adult homeostasis. In concordance with it’s numerous roles, dysfunction of WNT signaling leads to a variety of human diseases ranging from developmental disorders to cancer. WNT signaling is composed of a family of 19 WNT soluble secreted glycoproteins,

The WNT signaling pathway plays numerous roles in development and maintenance of adult homeostasis. In concordance with it’s numerous roles, dysfunction of WNT signaling leads to a variety of human diseases ranging from developmental disorders to cancer. WNT signaling is composed of a family of 19 WNT soluble secreted glycoproteins, which are evolutionarily conserved across all phyla of the animal kingdom. WNT ligands interact most commonly with a family of receptors known as frizzled (FZ) receptors, composed of 10 independent genes. Specific interactions between WNT proteins and FZ receptors are not well characterized and are known to be promiscuous, Traditionally canonical WNT signaling is described as a binary system in which WNT signaling is either off or on. In the ‘off’ state, in the absence of a WNT ligand, cytoplasmic β-catenin is continuously degraded by the action of the APC/Axin/GSK-3β destruction complex. In the ‘on’ state, when WNT binds to its Frizzled (Fz) receptor and LRP coreceptor, this protein destruction complex is disrupted, allowing β-catenin to translocate into the nucleus where it interacts with the DNA-bound T cell factor/lymphoid factor (TCF/LEF) family of proteins to regulate target gene expression. However in a variety of systems in development and disease canonical WNT signaling acts in a gradient fashion, suggesting more complex regulation of β-catenin transcriptional activity. As such, the traditional ‘binary’ view of WNT signaling does not clearly explain how this graded signal is transmitted intracellularly to control concentration-dependent changes in gene expression and cell identity. I have developed an in vitro human pluripotent stem cell (hPSC)-based model that recapitulates the same in vivo developmental effects of the WNT signaling gradient on the anterior-posterior (A/P) patterning of the neural tube observed during early development. Using RNA-seq and ChIP-seq I have characterized β-catenin binding at different levels of WNT signaling and identified different classes of β-catenin peaks that bind cis-regulatory elements to influence neural cell fate. This work expands the traditional binary view of canonical WNT signaling and illuminates WNT/β-catenin activity in other developmental and diseased contexts.
ContributorsCutts, Joshua Patrick (Author) / Brafman, David A (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Nikkhah, Mehdi (Committee member) / Wang, Xiao (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
157555-Thumbnail Image.png
Description
Calcium imaging is a well-established, non-invasive or minimally technique designed to study the electrical signaling neurons. Calcium regulates the release of gliotransmitters in astrocytes. Analyzing astrocytic calcium transients can provide significant insights into mechanisms such as neuroplasticity and neural signal modulation.

In the past decade, numerous methods have been developed

Calcium imaging is a well-established, non-invasive or minimally technique designed to study the electrical signaling neurons. Calcium regulates the release of gliotransmitters in astrocytes. Analyzing astrocytic calcium transients can provide significant insights into mechanisms such as neuroplasticity and neural signal modulation.

In the past decade, numerous methods have been developed to analyze in-vivo calcium imaging data that involves complex techniques such as overlapping signals segregation and motion artifact correction. The hypothesis used to detect calcium signal is the spatiotemporal sparsity of calcium signal, and these methods are unable to identify the passive cells that are not actively firing during the time frame in the video. Statistics regarding the percentage of cells in each frame of view can be critical for the analysis of calcium imaging data for human induced pluripotent stem cells derived neurons and astrocytes.

The objective of this research is to develop a simple and efficient semi-automated pipeline for analysis of in-vitro calcium imaging data. The region of interest (ROI) based image segmentation is used to extract the data regarding intensity fluctuation caused by calcium concentration changes in each cell. It is achieved by using two approaches: basic image segmentation approach and a machine learning approach. The intensity data is evaluated using a custom-made MATLAB that generates statistical information and graphical representation of the number of spiking cells in each field of view, the number of spikes per cell and spike height.
ContributorsBhandarkar, Siddhi Umesh (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2019
157532-Thumbnail Image.png
Description
Ideas from coding theory are employed to theoretically demonstrate the engineering of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen number of mutations and still express the originally intended protein. Attention is restricted to tolerating substitution mutations. Future advances in genomic engineering will make possible the ability

Ideas from coding theory are employed to theoretically demonstrate the engineering of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen number of mutations and still express the originally intended protein. Attention is restricted to tolerating substitution mutations. Future advances in genomic engineering will make possible the ability to synthesize entire genomes from scratch. This presents an opportunity to embed desirable capabilities like mutation-tolerance, which will be useful in preventing cell deaths in organisms intended for research or industrial applications in highly mutagenic environments. In the extreme case, mutation-tolerant genes (mutols) can make organisms resistant to retroviral infections.

An algebraic representation of the nucleotide bases is developed. This algebraic representation makes it possible to convert nucleotide sequences into algebraic sequences, apply mathematical ideas and convert results back into nucleotide terms. Using the algebra developed, a mapping is found from the naturally-occurring codons to an alternative set of codons which makes genes constructed from them mutation-tolerant, provided no more than one substitution mutation occurs per codon. The ideas discussed naturally extend to finding codons that can tolerate t arbitrarily chosen number of mutations per codon. Finally, random substitution events are simulated in both a wild-type green fluorescent protein (GFP) gene and its mutol variant and the amino acid sequence expressed from each post-mutation is compared with the amino acid sequence pre-mutation.

This work assumes the existence of synthetic protein-assembling entities that function like tRNAs but can read k nucleotides at a time, with k greater than or equal to 5. The realization of this assumption is presented as a challenge to the research community.
ContributorsAmpofo, Prince Kwame (Author) / Tian, Xiaojun (Thesis advisor) / Kiani, Samira (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2019
158125-Thumbnail Image.png
Description
Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in vitro. CRISPR/Cas9 and base editing technologies have been of recent interest because of their ability to create single nucleotide edits

Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in vitro. CRISPR/Cas9 and base editing technologies have been of recent interest because of their ability to create single nucleotide edits at nearly any genomic sequence using a Cas9 protein and a guide RNA (sgRNA). Currently, there is no available phenotype to differentiate edited cells from unedited cells. Past research has employed fluorescent proteins bound to Cas9 proteins to attempt to enrich for edited cells, however, these methods are only reporters of transfection (RoT) and are no indicative of actual base-editing occurring. Thus, this study proposes a transient reporter for editing enrichment (TREE) and Cas9-mediated adenosine TREE (CasMasTREE) which use plasmids to co-transfect with CRISPR/Cas9 technologies to serve as an indicator of base-editing. Specifically, TREE features a blue fluorescent protein (BFP) mutant that, upon a C-T conversion, changes the emission spectrum to a green fluorescent protein (GFP). CasMasTREE features a mCherry and GFP protein separated by a stop codon which can be negated using an A-G conversion. By employing a sgRNA that targets one of the TREE plasmids and at least one genomic site, cells can be sorted for GFP(+) cells. Using these methods, base-edited isogenic hiPSC line generation using TREE (BIG-TREE) was created to generate isogenic hiPSC lines with AD-relevant edits. For example, BIG-TREE demonstrates the capability of converting Apolipoprotein E (APOE), a gene associated with AD-risk development, wildtype (3/3) into another isoform, APOE2/2, to create isogenic hiPSC lines. The capabilities of TREE are vast and can be applied to generate various models of diseases with specific genomic edits.
ContributorsNguyen, Toan Thai Tran (Author) / Brafman, David (Thesis advisor) / Wang, Xiao (Committee member) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2020
158747-Thumbnail Image.png
Description
Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and

Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and has been largely applied in gene circuit engineering. In this work, the effect of adjacent genes and noncoding regions are systematically investigated through the construction of batteries of gene circuits in diverse scenarios. Data-driven analysis yields a protein expression metric that strongly correlates with the features of adjacent transcriptional regions (ATRs). This novel mathematical tool helps the guide for circuit construction and has the implication for the design of synthetic ATRs to tune gene expression, illustrating its potential to facilitate engineering complex gene networks. The ability to tune RNA dynamics is greatly needed for biotech applications, including therapeutics and diagnostics. Diverse methods have been developed to tune gene expression through transcriptional or translational manipulation. Control of RNA stability/degradation is often overlooked and can be the lightweight alternative to regulate protein yields. To further extend the utility of engineered ATRs to regulate gene expression, a library of RNA modules named degradation-tuning RNAs (dtRNAs) are designed with the ability to form specific 5’ secondary structures prior to RBS. These modules can modulate transcript stability while having a minimal interference on translation initiation. Optimization of their functional structural features enables gene expression level to be tuned over a wide dynamic range. These engineered dtRNAs are capable of regulating gene circuit dynamics as well as noncoding RNA levels and can be further expanded into cell-free system for gene expression control in vitro. Finally, integrating dtRNA with synthetic toehold sensor enables improved paper-based viral diagnostics, illustrating the potential of using synthetic dtRNAs for biomedical applications.
ContributorsZhang, Qi (Author) / Wang, Xiao (Thesis advisor) / Green, Alexander (Committee member) / Brafman, David (Committee member) / Tian, Xiaojun (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2020