Matching Items (22)
Filtering by

Clear all filters

190904-Thumbnail Image.png
Description
Allogeneic islet transplantation has the potential to reverse Type 1 Diabetes in patients. However, limitations such as chronic immunosuppression, islet donor numbers, and islet survival post-transplantation prevent the widespread application of allogeneic islet transplantation as the treatment of choice. Macroencapsulation devices have been widely used in allogeneic islet transplantation due

Allogeneic islet transplantation has the potential to reverse Type 1 Diabetes in patients. However, limitations such as chronic immunosuppression, islet donor numbers, and islet survival post-transplantation prevent the widespread application of allogeneic islet transplantation as the treatment of choice. Macroencapsulation devices have been widely used in allogeneic islet transplantation due to their capability to shield transplanted cells from the immune system as well as provide a supportive environment for cell viability, but macroencapsulation devices face oxygen transport challenges as their geometry increases from preclinical to clinical scales. The goal of this work is to generate complex 3D hydrogel macroencapsulation devices with sufficient oxygen transport to support encapsulated cell survival and generate these devices in a way that is accessible in the clinic as well as scaled manufacturing. A 3D-printed injection mold has been developed to generate hydrogel-based cell encapsulation devices with spiral geometries. The spiral geometry of the macroencapsulation device facilitates greater oxygen transport throughout the whole device resulting in improved islet function in vivo in a syngeneic rat model. A computational model of the oxygen concentration within macroencapsulation devices, validated by in vitro analysis, predicts that cells and islets maintain a greater viability and function in the spiral macroencapsulation device. To further validate the computational model, pO2 Reporter Composite Hydrogels (PORCH) are engineered to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the Proton Imaging of Siloxanes to map Tissue Oxygenation Levels (PISTOL) magnetic resonance imaging approach. Overall, a macroencapsulation device geometry designed via computational modeling of device oxygen gradients and validated with magnetic resonance (MR) oximetry imaging enhances islet function and survival for islet transplantation.
ContributorsEmerson, Amy (Author) / Weaver, Jessica (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Sadleir, Rosalind (Committee member) / Stabenfeldt, Sarah (Committee member) / Wang, Kuei-Chun (Committee member) / Arizona State University (Publisher)
Created2023
189301-Thumbnail Image.png
Description
Cellular metabolism is an essential process required for tissue formation, energy production and systemic homeostasis and becomes dysregulated in many disease states. In the context of human cerebral cortex development, there’s a limited understanding of how metabolic pathways, such as glycolysis, impacts proliferation and differentiation of cortical cells. The technical

Cellular metabolism is an essential process required for tissue formation, energy production and systemic homeostasis and becomes dysregulated in many disease states. In the context of human cerebral cortex development, there’s a limited understanding of how metabolic pathways, such as glycolysis, impacts proliferation and differentiation of cortical cells. The technical challenges of studying primary in vivo cortical tissue at a cellular and molecular level led to the development of human pluripotent stem cell (PSC) derived cortical organoids. Cortical organoids are a highly tractable model system that can be used for high-throughput investigation of early stages of development and corresponding glycolytic programs. Through transplantation of cortical organoids into the developing mouse cortex, human cortical cells can also be studied in an in vivo environment that more closely resembles endogenous development where the impact of metabolism in typical developmental programs and disease states can be studied. While current data is preliminary, initial observations suggest that cortical populations increase glucose uptake over time and regulation of glucose uptake rates occur in cell type-specific manner. Additionally, mouse transplantation data suggests that glycolytic activity is downregulated post-transplantation, suggesting that the in vitro environment contributes metabolic state. The more dynamic range of metabolic states in vivo may impact the rate of differentiation and maturation in cellular populations in the transplant model. I hypothesize that the more endogenous-like regulation of glycolysis may impact the proliferative window and expansion of key progenitor cell types in the human brain, particularly the intermediate progenitor cells.
ContributorsMorales, Alexandria (Author) / Andrews, Madeline (Thesis advisor) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2023