Matching Items (7)
Filtering by

Clear all filters

156545-Thumbnail Image.png
Description
Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer,

Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer, despite of decades of behavioral evidence. Moreover, motor generalization is studied as a probe to understanding how movements in any novel situations are affected by previous experiences. Thus, one could assume that mechanisms underlying transfer from trained to untrained tasks may be same as the ones known to be underlying motor generalization. However, the direct relationship between transfer and generalization has not yet been shown, thereby limiting the assumption that transfer and generalization rely on the same mechanisms. The purpose of this study was to test whether there is a relationship between motor generalization and motor transfer. To date, ten healthy young adult subjects were scored on their motor generalization ability and motor transfer ability on various upper extremity tasks. Although our current sample size is too small to clearly identify whether there is a relationship between generalization and transfer, Pearson product-moment correlation results and a priori power analysis suggest that a significant relationship will be observed with an increased sample size by 30%. If so, this would suggest that the mechanisms of transfer may be similar to those of motor generalization.
ContributorsSohani, Priyanka (Author) / Schaefer, Sydney (Thesis advisor) / Daliri, Ayoub (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2018
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
171425-Thumbnail Image.png
Description
Prosodic features such as fundamental frequency (F0), intensity, and duration convey important information of speech intonation (i.e., is it a statement or a question?). Because cochlear implants (CIs) do not adequately encode pitch-related F0 cues, pre-lignually deaf pediatric CI users have poorer speech intonation perception and production than normal-hearing (NH)

Prosodic features such as fundamental frequency (F0), intensity, and duration convey important information of speech intonation (i.e., is it a statement or a question?). Because cochlear implants (CIs) do not adequately encode pitch-related F0 cues, pre-lignually deaf pediatric CI users have poorer speech intonation perception and production than normal-hearing (NH) children. In contrast, post-lingually deaf adult CI users have developed speech production skills via normal hearing before deafness and implantation. Further, combined electric hearing (via CI) and acoustic hearing (via hearing aid, HA) may improve CI users’ perception of pitch cues in speech intonation. Therefore, this study tested (1) whether post-lingually deaf adult CI users have similar speech intonation production to NH adults and (2) whether their speech intonation production improves with auditory feedback via CI+HA (i.e., bimodal hearing). Eight post-lingually deaf adult bimodal CI users and nine NH adults participated in this study. 10 question-and-answer dialogues with an experimenter were used to elicit 10 pairs of syntactically matched questions and statements from each participant. Bimodal CI users were tested under four hearing conditions: no-device (ND), HA, CI, and CI+HA. F0 change, intensity change, and duration ratio between the last two syllables of each utterance were analyzed to evaluate the quality of speech intonation production. The results showed no significant differences between CI and NH participants in any of the acoustic features of questions and statements. For CI participants, the CI+HA condition led to significantly greater F0 decreases of statements than the ND condition, while the ND condition led to significantly greater duration ratios of questions and statements. These results suggest that bimodal CI users change the use of prosodic cues for speech intonation production in different hearing conditions and access to auditory feedback via CI+HA may improve their voice pitch control to produce more salient statement intonation contours.
ContributorsAi, Chang (Author) / Luo, Xin (Thesis advisor) / Daliri, Ayoub (Committee member) / Davidson, Lisa (Committee member) / Arizona State University (Publisher)
Created2022
171875-Thumbnail Image.png
Description
Studies using transcranial direct current stimulation (tDCS) to enhance motor training areoften irreproducible. This may be partly due to differences in stimulation parameters across studies, but it is also plausible that uncontrolled placebo effects may interact with the true ‘treatment’ effect of tDCS. Thus, the purpose of this study was to test

Studies using transcranial direct current stimulation (tDCS) to enhance motor training areoften irreproducible. This may be partly due to differences in stimulation parameters across studies, but it is also plausible that uncontrolled placebo effects may interact with the true ‘treatment’ effect of tDCS. Thus, the purpose of this study was to test whether there was a placebo effect of tDCS on motor training and to identify possible mechanisms of such an effect. Fifty-one participants (age: 22.2 ± 4.16; 26 F) were randomly assigned to one of three groups: active anodal tDCS (n=18), sham tDCS (n=18), or no stimulation control (n=15). Participant expectations about how much tDCS could enhance motor function and their general suggestibility were assessed. Participants then completed 30 trials of functional upper extremity motor training with or without online tDCS. Stimulation (20-min, 2mA) was applied to the right primary motor cortex (C4) in a double-blind, sham-controlled fashion, while the control group was unblinded and not exposed to any stimulation. Following motor training, expectations about how much tDCS could enhance motor function were assessed again for participants in the sham and active tDCS groups only. Results showed no effect of active tDCS on motor training (p=.67). However, there was a significant placebo effect, such that the collapsed sham and active tDCS groups improved more during motor training than the control group (p=.02). This placebo effect was significantly influenced by post-training expectations about tDCS (p=.0004). Thus, this exploratory study showed that there is a measurable placebo effect of tDCS on motor training, likely driven by participants’ perceptions of whether they received stimulation. Future studies should consider placebo effects of tDCS and identify their underlying mechanisms in order to leverage them in clinical care.
ContributorsHAIKALIS, NICOLE (Author) / Schaefer, Sydney Y (Thesis advisor) / Honeycutt, Claire (Committee member) / Daliri, Ayoub (Committee member) / Arizona State University (Publisher)
Created2022
171661-Thumbnail Image.png
Description
Speech and music are traditionally thought to be primarily supported by different hemispheres. A growing body of evidence suggests that speech and music often rely on shared resources in bilateral brain networks, though the right and left hemispheres exhibit some domain-specific specialization. While there is ample research investigating speech deficits

Speech and music are traditionally thought to be primarily supported by different hemispheres. A growing body of evidence suggests that speech and music often rely on shared resources in bilateral brain networks, though the right and left hemispheres exhibit some domain-specific specialization. While there is ample research investigating speech deficits in individuals with right hemisphere lesions and amusia, fewer investigate amusia in individuals with left hemisphere lesions and aphasia. Many of the fronto-temporal-parietal regions in the left hemisphere commonly associated with speech processing and production are also implicated in bilateral music processing networks. The current study investigates the relationship between damage to specific regions of interest within these networks, and an individual’s ability to successfully match the pitch and rhythm of a presented melody. Twenty-seven participants with chronic-stroke lesions were given a melody repetition task to hum short novel piano melodies. Participants underwent structural MRI acquisition and were administered an extensive speech and cognitive battery. Pitch and rhythm scores were calculated by correlating participant responses and target piano notes. Production errors were calculated by counting trials with responses that don’t match the target melody’s note count. Overall, performance varied widely, and rhythm scores were significantly correlated. Working memory scores were significantly correlated with rhythm scores and production errors, but not pitch scores. Broca’s area lesions were not associated with significant differences in any of the melody repetition measures, while left Heschl’s gyrus lesions were associated with worse performance on pitch, rhythm, and production errors. Lower rhythm scores were associated with lesions including both the left anterior and posterior superior temporal gyrus, and in participants with damage to the left planum temporale. The other regions of interest were not consistently associated with poorer pitch scores or production errors. Although the present study does have limitations, the current study suggests lesions to left hemisphere regions thought to only affect speech also affect musical pitch and rhythm processing. Therefore, amusia should not be characterized solely as a right hemisphere disorder. Instead, musical abilities of individuals with left hemisphere stroke and aphasia should be characterized to better understand their deficits and mechanisms of impairment.
ContributorsWojtaszek, Mallory (Author) / Rogalsky, Corianne (Thesis advisor) / Daliri, Ayoub (Committee member) / Patten, Kristopher (Committee member) / Arizona State University (Publisher)
Created2022
171445-Thumbnail Image.png
Description
Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally

Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally significant changes in individuals with severe post- stroke aphasia remains a key challenge for the rehabilitation community. This dissertation aimed to evaluate the efficacy of Startle Adjuvant Rehabilitation Therapy (START), a tele-enabled, low- cost treatment, to improve quality of life and speech in individuals with severe-to-moderate stroke. START is the exposure to startling acoustic stimuli during practice of motor tasks in individuals with stroke. START increases the speed and intensity of practice in severely impaired post-stroke reaching, with START eliciting muscle activity 2-3 times higher than maximum voluntary contraction. Voluntary reaching distance, onset, and final accuracy increased after a session of START, suggesting a rehabilitative effect. However, START has not been evaluated during impaired speech. The objective of this study is to determine if impaired speech can be elicited by startling acoustic stimuli, and if three days of START training can enhance clinical measures of moderate to severe post-stroke aphasia and apraxia of speech. This dissertation evaluates START in 42 individuals with post-stroke speech impairment via telehealth in a Phase 0 clinical trial. Results suggest that impaired speech can be elicited by startling acoustic stimuli and that START benefits individuals with severe-to-moderate post-stroke impairments in both linguistic and motor speech domains. This fills an important gap in aphasia care, as many speech therapies remain ineffective and financially inaccessible for patients with severe deficits. START is effective, remotely delivered, and may likely serve as an affordable adjuvant to traditional therapy for those that have poor access to quality care.
ContributorsSwann, Zoe Elisabeth (Author) / Honeycutt, Claire F (Thesis advisor) / Daliri, Ayoub (Committee member) / Rogalsky, Corianne (Committee member) / Liss, Julie (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2022
132557-Thumbnail Image.png
Description
Past studies have shown that auditory feedback plays an important role in maintaining the speech production system. Typically, speakers compensate for auditory feedback alterations when the alterations persist over time (auditory motor adaptation). Our study focused on how to increase the rate of adaptation by using different auditory feedback conditions.

Past studies have shown that auditory feedback plays an important role in maintaining the speech production system. Typically, speakers compensate for auditory feedback alterations when the alterations persist over time (auditory motor adaptation). Our study focused on how to increase the rate of adaptation by using different auditory feedback conditions. For the present study, we recruited a total of 30 participants. We examined auditory motor adaptation after participants completed three conditions: Normal speaking, noise-masked speaking, and silent reading. The normal condition was used as a control condition. In the noise-masked condition, noise was added to the auditory feedback to completely mask speech outputs. In the silent reading condition, participants were instructed to silently read target words in their heads, then read the words out loud. We found that the learning rate in the noise-masked condition was lower than that in the normal condition. In contrast, participants adapted at a faster rate after they experience the silent reading condition. Overall, this study demonstrated that adaptation rate can be modified through pre-exposing participants to different types auditory-motor manipulations.
ContributorsNavarrete, Karina (Author) / Daliri, Ayoub (Thesis director) / Peter, Beate (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05