Matching Items (572)
Filtering by

Clear all filters

151822-Thumbnail Image.png
Description
As schools across Arizona worked to meet NCLB's AYP requirement in 2010-2011, they were also labeled and sanctioned by AZ Learns. This phenomenological study focused on six effective high school principals in two Arizona school districts to ascertain how accountability policies impacted the principals' job responsibilities, autonomy, and ability to

As schools across Arizona worked to meet NCLB's AYP requirement in 2010-2011, they were also labeled and sanctioned by AZ Learns. This phenomenological study focused on six effective high school principals in two Arizona school districts to ascertain how accountability policies impacted the principals' job responsibilities, autonomy, and ability to pursue social justice on their campuses. Interviews were conducted in three phases: superintendents, three principals from the superintendents' recommendations of effective school leaders, and three teachers from each school. In addition to analysis of individual principal leadership patterns, comparisons were made across districts, and from school to school within the same district. The goal of the study was to determine if and how principals were able to accomplish their goals for their school. The principals' leadership styles were examined through a Vortex Leadership Framework that posited principals at the center of a vortex of varying leadership roles, interests, and external forces, including accountability, autonomy, and limited resources. Key findings included (a) high school principals' responsibilities now include selling change to their staff, (b) principals' accountability is limited more by district constraints than by state or federal accountability, (c) principals must contend with rigid one-size fits all accountability standards that do not always meet the needs of their students, and (d) principals' autonomy is tied to their resources, including funding for staffing and programs.
ContributorsBatsell, Holly (Author) / Powers, Jeanne M. (Thesis advisor) / Mccarty, Teresa (Committee member) / Davey, Lynn (Committee member) / Arizona State University (Publisher)
Created2013
152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
152013-Thumbnail Image.png
Description
Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present

Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present study investigated the effects of arm configuration on the interaction between planning noise and execution noise. Subjects performed reaching movements to three targets located in a frontal plane. At the starting position, subjects matched one of two desired arm configuration 'templates' namely "adducted" and "abducted". These arm configurations were obtained by rotations along the shoulder-hand axis, thereby maintaining endpoint position. Visual feedback of the hand was varied from trial to trial, thereby increasing uncertainty in movement planning and execution. It was hypothesized that 1) pattern of endpoint variability would be dependent on arm configuration and 2) that these differences would be most apparent in conditions without visual feedback. It was found that there were differences in endpoint variability between arm configurations in both visual conditions, but these differences were much larger when visual feedback was withheld. The overall results suggest that patterns of endpoint variability are highly dependent on arm configuration, particularly in the absence of visual feedback. This suggests that in the presence of vision, movement planning in 3D space is performed using coordinates that are largely arm configuration independent (i.e. extrinsic coordinates). In contrast, in the absence of vision, movement planning in 3D space reflects a substantial contribution of intrinsic coordinates.
ContributorsLakshmi Narayanan, Kishor (Author) / Buneo, Christopher (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151326-Thumbnail Image.png
Description
The signing of the No Child Left Behind Act in 2001 created a need for Title 1 principals to conceptualize and operationalize parent engagement. This study examines how three urban principals in Arizona implemented the mandates of the Act as it pertains to parent involvement. The purpose of this qualitative

The signing of the No Child Left Behind Act in 2001 created a need for Title 1 principals to conceptualize and operationalize parent engagement. This study examines how three urban principals in Arizona implemented the mandates of the Act as it pertains to parent involvement. The purpose of this qualitative case study is to examine how principals operationalize and conceptualize parent involvement as they navigate barriers and laws particular to the state of Arizona. This study sought to understand issues surrounding parent involvement in Title 1 schools in Arizona. The beliefs and interview dialogue of the principals as it pertains to parent engagement provided an understanding of how urban principals in Arizona implement the aspects of No Child Left Behind Act that deal with parent involvement. The research study concluded that parents have community cultural wealth that contributes to the success of the students of engaged parents and that cultural responsive leadership assists principals with engaging parents in their schools. The research concludes that a gap exists between how parents and principals perceive and construct parent engagement versus what is prescribed in No Child Left Behind Act.
ContributorsConley, Loraine (Author) / Brayboy, Bryan (Thesis advisor) / Mccarty, Teresa (Committee member) / Scott, Kimberly (Committee member) / Arizona State University (Publisher)
Created2012
151372-Thumbnail Image.png
Description
The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery. Timed-pregnant Sprague-Dawley rats (n=36) were used. On day 14 of

The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery. Timed-pregnant Sprague-Dawley rats (n=36) were used. On day 14 of gestation, the FUS system was placed on the body surface of the rat over the cervix and ultrasound energy was applied to cervix for variable times up to 1 hour in the control group, the FUS system was placed on rats but no energy was applied. Daily measurement of cervix light-induced florescence (LIF, photon counts of collagen x-bridge fluorescence) were made on days 16 of gestation and daily until spont-aneous delivery (day22) to estimate changes in cervical ripening. We found that pulses of 680 KHz ultrasound at 25 Hertz, 1 millisecond pulse duration at 1W/cm^2 applied for as little as 30 minutes would immediately afterwards show the cervix to hav e ripened to the degree seen just before delivery on day 22. Delivery times, fetal weights and viability were unaffected in the FUS-treated animals.
ContributorsLuo, Daishen (Author) / Towe, Bruce C (Thesis advisor) / Wang, Xiao (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151547-Thumbnail Image.png
Description
An unrelenting need exists to improve literacy instruction in secondary schools in the United States. Reading scores, especially among minority and language minority students, as well as the economically disadvantaged, have not produced significant gains in recent years. The problem of low level reading skills in secondary grades is complicated

An unrelenting need exists to improve literacy instruction in secondary schools in the United States. Reading scores, especially among minority and language minority students, as well as the economically disadvantaged, have not produced significant gains in recent years. The problem of low level reading skills in secondary grades is complicated to address, however, as many secondary teachers find themselves ill-equipped to deal with the challenges they face. Improving student achievement by integrating reading comprehension strategies into the freshman English curriculum was the ultimate goal of this innovation. A total of 15 freshman English language arts teachers and 30 freshman students participated in this 14 week action research study, which involved teaching explicit pre-, during-, and post-reading strategies during daily lessons at a large, urban high school in the Southwestern United States. Data were collected using a reading diagnostic test, focus group interviews with teachers, individual interviews with teachers and students, and teacher observations. Findings from the data suggest that professional development designed to infuse comprehension strategies through collaborative inquiry among English language arts teachers contributed to assisting students to perform better on reading diagnostic measures. Furthermore, the findings suggest that this method of professional development served to raise teachers' self-efficacy regarding literacy instruction, which, in turn, improved students' efficacy and performance as readers.
ContributorsWilliams, Jeffrey (Author) / Roe, Mary (Thesis advisor) / Weber, Catherine (Committee member) / Allen, Althe (Committee member) / Arizona State University (Publisher)
Created2013
151602-Thumbnail Image.png
Description
Alzheimer's disease (AD) is the leading neurodegenerative disease, affecting roughly 8% of people 65 years of age or older. There exists an imperative need to develop a non-invasive test for the earlier detection of AD. The use of biomarkers is a promising option that examines the toxic mechanisms and metabolic

Alzheimer's disease (AD) is the leading neurodegenerative disease, affecting roughly 8% of people 65 years of age or older. There exists an imperative need to develop a non-invasive test for the earlier detection of AD. The use of biomarkers is a promising option that examines the toxic mechanisms and metabolic pathways that cause Alzheimer's disease, eventually leading to an early diagnostic method. This thesis presents the use of oligomeric beta-amyloid as a biomarker to detect Alzheimer's disease via a specialized enzyme-linked protein assay. Specifically, this paper details the optimization and development of a novel phage capture enzyme-linked immunosorbent assay (ELISA) that can detect the relative quantity of beta-amyloid oligomers in samples from a mouse model of AD. The objective of this thesis was to optimize a phage capture ELISA using the A4 single-chain variable fragment (scFv) to quantify the amount of beta-amyloid oligomers in various mice samples. A4 selectively recognizes a toxic oligomeric form of beta-amyloid. The level of A4-reactive oligomeric beta-amyloid was measured in triplicate in homogenized mouse brain tissue samples from eight transgenic (TG) and eight nontransgenic (NTG) animals aged five, nine, and thirteen months. There was a significant difference (p < 0.0005) between the five month TG and NTG mice. A decrease in beta-amyloid levels with the aging of the TG mice suggested that the beta-amyloid oligomers may be aggregating to form beta-amyloid fibrils. Conversely, the quantity of beta-amyloid increased with the aging of the NTG mice. This indicated that beta-amyloid oligomers may develop with normal aging.
ContributorsBrownlee, Taylor (Author) / Sierks, Michael (Thesis advisor) / Williams, Stephanie (Committee member) / Xin, Wei (Committee member) / Arizona State University (Publisher)
Created2013
151478-Thumbnail Image.png
Description
Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge

Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge in both of the aforementioned applications is the efficient delivery of siRNA molecules, plasmids or transcription factors to primary cells such as neurons. A majority of the current non-viral techniques, including chemical transfection, bulk electroporation and sonoporation fail to deliver with adequate efficiencies and the required spatial and temporal control. In this study, a novel optically transparent biochip is presented that can (a) transfect populations of primary and secondary cells in 2D culture (b) readily scale to realize high-throughput transfections using microscale electroporation and (c) transfect targeted cells in culture with spatial and temporal control. In this study, delivery of genetic payloads of different sizes and molecular characteristics, such as GFP plasmids and siRNA molecules, to precisely targeted locations in primary hippocampal and HeLa cell cultures is demonstrated. In addition to spatio-temporally controlled transfection, the biochip also allowed simultaneous assessment of a) electrical activity of neurons, b) specific proteins using fluorescent immunohistochemistry, and c) sub-cellular structures. Functional silencing of GAPDH in HeLa cells using siRNA demonstrated a 52% reduction in the GAPDH levels. In situ assessment of actin filaments post electroporation indicated a sustained disruption in actin filaments in electroporated cells for up to two hours. Assessment of neural spike activity pre- and post-electroporation indicated a varying response to electroporation. The microarray based nature of the biochip enables multiple independent experiments on the same culture, thereby decreasing culture-to-culture variability, increasing experimental throughput and allowing cell-cell interaction studies. Further development of this technology will provide a cost-effective platform for performing high-throughput genetic screens.
ContributorsPatel, Chetan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Jain, Tilak (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2012
151480-Thumbnail Image.png
Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use

The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
ContributorsAustin, Hiroko (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012