Matching Items (40)
Filtering by

Clear all filters

150217-Thumbnail Image.png
Description
The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some

The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some of these devices have made enormous contributions in the study of complex biochemical processes occurring at the molecular and cellular levels while others overcame the challenges of replicating various functions of human organs as implant systems. This thesis presents test data and analysis of two such systems. First, an ISFET based pH sensor is characterized for its performance in a continuous pH monitoring application. Many of the basic properties of ISFETs including I-V characteristics, pH sensitivity and more importantly, its long term drift behavior have been investigated. A new theory based on frequent switching of electric field across the gate oxide to decrease the rate of current drift has been successfully implemented with the help of an automated data acquisition and switching system. The system was further tested for a range of duty cycles in order to accurately determine the minimum length of time required to fully reset the drift. Second, a microfluidic based vestibular implant system was tested for its underlying characteristics as a light sensor. A computer controlled tilt platform was then implemented to further test its sensitivity to inclinations and thus it‟s more important role as a tilt sensor. The sensor operates through means of optoelectronics and relies on the signals generated from photodiode arrays as a result of light being incident on them. ISFET results show a significant drop in the overall drift and good linear characteristics. The drift was seen to reset at less than an hour. The photodiodes show ideal I-V comparison between photoconductive and photovoltaic modes of operation with maximum responsivity at 400nm and a shunt resistance of 394 MΩ. Additionally, post-processing of the tilt sensor to incorporate the sensing fluids is outlined. Based on several test and fabrication results, a possible method of sealing the open cavity of the chip using a UV curable epoxy has been discussed.
ContributorsMamun, Samiha (Author) / Christen, Jennifer Blain (Thesis advisor) / Goryll, Michael (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2011
152319-Thumbnail Image.png
Description
In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably,

In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably, which requires the junctions to be more thermally stable than current Nb/Al-AlOx/Nb junctions. Based on thermodynamics, Hf was chosen to produce thermally stable Nb/Hf-HfOx/Nb superconductor tunnel Josephson junctions that can be grown or processed at elevated temperatures. Also elevated synthesis temperatures improve the structural and electrical properties of Nb electrode layers that could potentially improve junction device performance. The refractory nature of Hf, HfO2 and Nb allow for the formation of flat, abrupt and thermally-stable interfaces. But the current Al-based barrier will have problems when using with high-temperature grown and high-quality Nb. So our work is aimed at using Nb grown at elevated temperatures to fabricate thermally stable Josephson tunnel junctions. As a junction barrier metal, Hf was studied and compared with the traditional Al-barrier material. We have proved that Hf-HfOx is a good barrier candidate for high-temperature synthesized Josephson junction. Hf deposited at 500 °C on Nb forms flat and chemically abrupt interfaces. Nb/Hf-HfOx/Nb Josephson junctions were synthesized, fabricated and characterized with different oxidizing conditions. The results of materials characterization and junction electrical measurements are reported and analyzed. We have improved the annealing stability of Nb junctions and also used high-quality Nb grown at 500 °C as the bottom electrode successfully. Adding a buffer layer or multiple oxidation steps improves the annealing stability of Josephson junctions. We also have attempted to use the Atomic Layer Deposition (ALD) method for the growth of Hf oxide as the junction barrier and got tunneling results.
ContributorsHuang, Mengchu, 1987- (Author) / Newman, Nathan (Thesis advisor) / Rowell, John M. (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
151415-Thumbnail Image.png
Description
In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) groups following the plasma exposure. Increased temperature (380 °C) processing leads to a reduction of the hydroxyl group formation compared to ambient temperature processes, resulting in reduced changes of the dielectric constant. For CMP Cu surfaces, the carbonate contamination was removed by an H2 plasma process at elevated temperature while the C-C and C-H contamination was removed by an N2 plasma process at elevated temperature. The second part of this study examined oxide stability and cleaning of Ru surfaces as well as consequent Cu film thermal stability with the Ru layers. The ~2 monolayer native Ru oxide was reduced after H-plasma processing. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru ii interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated in the third part. The barrier properties and interfacial stability have been evaluated by Rutherford backscattering spectrometry (RBS). Atomic force microscopy (AFM) was used to measure the surfaces before and after annealing, and all the surfaces are relatively smooth excluding islanding or de-wetting phenomena as a cause of the instability. The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS indicates that during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident than Ti. Among the three adhesion layer candidates, Ru shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.
ContributorsLiu, Xin (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Smith, David (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2012
151306-Thumbnail Image.png
Description
Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.
ContributorsWelch, David (Author) / Blain Christen, Jennifer (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Frakes, David (Committee member) / LaBelle, Jeffrey (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151412-Thumbnail Image.png
Description
The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09 ± 0.32) × 10-3 in the energy range of 15 keV to 340 keV. This was achieved by prompt coincident detection of an electron and photon, in delayed coincidence with a proton. The photons were detected by using a single bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode. This thesis deals with the follow-up experiment, RDK II, to measure the branching ratio at the level of approximately 1% and the energy spectrum at the level of a few percent. The most significant improvement of RDK II is the use of a photon detector with about an order of magnitude greater solid angle coverage than RDK I. In addition, the detectable energy range has been extended down to approximately 250 eV and up to the endpoint energy of 782 keV. This dissertation presents an overview of the apparatus, development of a new data analysis technique for radiative decay, and results for the ratio of electron-proton-photon coincident Repg to electron-proton coincident Rep events.
ContributorsO'Neill, Benjamin (Author) / Alarcon, Ricardo (Thesis advisor) / Drucker, Jeffery (Committee member) / Lebed, Richard (Committee member) / Comfort, Joseph (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2012
151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013
Description
This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue

This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue types. This new model provides answers to biologically meaningful questions related to the impedance response of healthy and diseased tissues. This model breaks away from the old empirical top down "black box" Thèvinin equivalent model. The new tissue model developed here was created from a bottom up perspective resulting in a model that is analogous to having a "Transparent Box" where each network element relating to a specific structural component is known. This new model was developed starting with sub cellular ultra-structural components such as membranes, proteins and electrolytes. These components formed the basic network elements and topology of the organelles. The organelle networks combine to form the cell networks. The cell networks combine to make networks of cell layers and the cell layers were combined into tissue networks. This produced the complete "Transparent Box" model for normal tissue. This normal tissue model was modified for disease based on the ultra-structural pathology of each disease. The diseased tissues evaluated include cancers type one through type three; necrotic-inflammation, hyperkeratosis and the compound condition of hyperkeratosis over cancer type two. The impedance responses for each of the disease were compared side by side with the response of normal healthy tissue. Comparative evidence from the models showed the structural changes in cancer produce a unique identifiable impedance "finger print." The evaluation of the "Transparent Box" model for normal tissues and diseased tissues show clear support for using comparative impedance measurements as a clinical tool for oral cancer screening.
ContributorsPelletier, Peter Robert (Author) / Kozicki, Michael (Thesis advisor) / Towe, Bruce (Committee member) / Saraniti, Marco (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
150787-Thumbnail Image.png
Description
The research described in this dissertation has involved the use of transmission electron microcopy (TEM) to characterize the structural properties of II-VI and III-V compound semiconductor heterostructures and superlattices. The microstructure of thick ZnTe epilayers (~2.4 µm) grown by molecular beam epitaxy (MBE) under virtually identical conditions on GaSb, InAs,

The research described in this dissertation has involved the use of transmission electron microcopy (TEM) to characterize the structural properties of II-VI and III-V compound semiconductor heterostructures and superlattices. The microstructure of thick ZnTe epilayers (~2.4 µm) grown by molecular beam epitaxy (MBE) under virtually identical conditions on GaSb, InAs, InP and GaAs (100) substrates were compared using TEM. High-resolution electron micrographs revealed a highly coherent interface for the ZnTe/GaSb sample, and showed extensive areas with well-separated interfacial misfit dislocations for the ZnTe/InAs sample. Lomer edge dislocations and 60o dislocations were commonly observed at the interfaces of the ZnTe/InP and ZnTe/GaAs samples. The amount of residual strain at the interfaces was estimated to be 0.01% for the ZnTe/InP sample and -0.09% for the ZnTe/GaAs sample. Strong PL spectra for all ZnTe samples were observed from 80 to 300 K. High quality GaSb grown by MBE on ZnTe/GaSb (001) virtual substrates with a temperature ramp at the beginning of the GaSb growth has been demonstrated. High-resolution X-ray diffraction (XRD) showed clear Pendellösung thickness fringes from both GaSb and ZnTe epilayers. Cross-section TEM images showed excellent crystallinity and smooth morphology for both ZnTe/GaSb and GaSb/ZnTe interfaces. Plan-view TEM image revealed the presence of Lomer dislocations at the interfaces and threading dislocations in the top GaSb layer. The defect density was estimated to be ~1 x107/cm2. The PL spectra showed improved optical properties when using the GaSb transition layer grown on ZnTe with a temperature ramp. The structural properties of strain-balanced InAs/InAs1-xSbx SLs grown on GaSb (001) substrates by metalorganic chemical vapor deposition (MOCVD) and MBE, have been studied using XRD and TEM. Excellent structural quality of the InAs/InAs1-xSbx SLs grown by MOCVD has been demonstrated. Well-defined ordered-alloy structures within individual InAs1-xSbx layers were observed for samples grown by modulated MBE. However, the ordering disappeared when defects propagating through the SL layers appeared during growth. For samples grown by conventional MBE, high-resolution images revealed that interfaces for InAs1-xSbx grown on InAs layers were sharper than for InAs grown on InAs1-xSbx layers, most likely due to a Sb surfactant segregation effect.
ContributorsOuyang, Lu (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha (Committee member) / Ponce, Fernando (Committee member) / Chamberlin, Ralph (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2012
150432-Thumbnail Image.png
Description
In this thesis a new method based on the Tight-Binding Linear Muffin Tin Orbital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) approximation is proposed. The method is capable of generating accurate electronic bands structure of large supercells necessary to model alloys structures. The strategy consist in building simple and

In this thesis a new method based on the Tight-Binding Linear Muffin Tin Orbital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) approximation is proposed. The method is capable of generating accurate electronic bands structure of large supercells necessary to model alloys structures. The strategy consist in building simple and small hamiltonian from linear Muffin-tin-orbitals (LMTO). Parameters in this hamiltonian are then used to fit the difference in QSGW self-energies and LDA exchange-correlation potentials. The parameter are assumed to transfer to new environments --- a procedure we check carefully by comparing our predicted band to QSGW bands for small supercells. The method possess both the accuracy of the QSGW approximation, (which is the most reliable way to determine energy bands accurately, and yet too expensive for the large supercells required here), and the efficiency of the TB-LMTO method. The accurate and highly efficient hamiltonian is used to predict the electronic and optical transitions of Si1-xGex alloys and SnxSiyGe1-x-y alloys. The goal is to engineer direct band gap material compatible with the silicon technology. The results obtained are compared to available experimental data.
ContributorsDonfack, Hermann Azemtsa (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Dow, John D. (Thesis advisor) / Ponce, Fernando (Committee member) / Ritchie, Barry (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2011