Matching Items (92)
Filtering by

Clear all filters

148124-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines. Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies. This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single-use. Food is the largest market out of all the packaging industry, maintaining roughly two-thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will, in turn, release toxic chemicals like Bisphenol-A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsDeng, Aretha (Co-author) / Tao, Adlar (Co-author) / Vargas, Cassandra (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136286-Thumbnail Image.png
Description
This piece aims to discuss the roles of emerging geographies within the context of global supply chains, approaching the conversation with a "systems" view, emphasizing three key facets essential to a holistic and interdisciplinary environmental analysis: -The Implications of Governmental & Economic Activities -Supply Chain Enablement Activities, Risk Mitigation in

This piece aims to discuss the roles of emerging geographies within the context of global supply chains, approaching the conversation with a "systems" view, emphasizing three key facets essential to a holistic and interdisciplinary environmental analysis: -The Implications of Governmental & Economic Activities -Supply Chain Enablement Activities, Risk Mitigation in Emerging Nations -Implications Regarding Sustainability, Corporate Social Responsibility In the appreciation of the interdisciplinary implications that stem from participation in global supply networks, supply chain professionals can position their firms for continued success in the proactive construction of robust and resilient supply chains. Across industries, how will supply networks in emerging geographies continue to evolve? Appreciating the inherent nuances related to the political and economic climate of a region, the extent to which enablement activities must occur, and sustainability/CSR tie-ins will be key to acquire this understanding. This deliverable aims to leverage the work of philosophers, researchers and business personnel as these questions are explored. The author will also introduce a novel method of teaching (IMRS) in the undergraduate business classroom that challenges the students to integrate their prior experiences both in the classroom and in the business world as they learn to craft locally relevant solutions to solve complex global problems.
ContributorsVaney, Rachel Lee (Author) / Maltz, Arnold (Thesis director) / Kellso, James (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor)
Created2015-05
136471-Thumbnail Image.png
Description
The rationale behind this thesis is grounded in nearly two years of experience interning at UTC Aerospace Systems (UTAS). I was able to gain a wide exposure to different facets of the supply chain management organization during my time as an intern, from strategic sourcing and commodity management, to tactical

The rationale behind this thesis is grounded in nearly two years of experience interning at UTC Aerospace Systems (UTAS). I was able to gain a wide exposure to different facets of the supply chain management organization during my time as an intern, from strategic sourcing and commodity management, to tactical procurement and supplier development. In each of these respective areas, I observed a variety of initiatives that did not reach their full potential because employees were not provided the tools for success. One of these areas in particular is the New Product Introduction (NPI) process management, in which there is not a standard process for program managers to follow from start to finish. I saw this as an opportunity to hone in the scope of my thesis research and experience at UTAS to improve a process and provide standard work and tools for it to be consistently executed. The current state process is not formalized \u2014 it merely tracks certain metrics that are not necessarily applicable to the overall health of the program because they do not monitor the progress of the program. This resulted in heavy costs incurred from inadequate planning, a skewed timeline, and customer frustration. The aim of the desired state NPI process is to gather cross-functional expertise and weigh in, adhere to a strict entry to market timeline, and increase customer satisfaction, all while minimizing costs incurred throughout the life of the program. The dominant output of this project will be a cross-functional flow chart of the process for each group to follow and standard work and tools to support the process across a variety of NPI program applications.
ContributorsThorn, Taylor Aiko Marie (Author) / Brown, Steven (Thesis director) / Arrigoni, Gregory (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
135865-Thumbnail Image.png
Description
This study aims to find measurable approaches to achieve sustainable closed-loop supply chain. The proposed methodology here was initiated with my experience that was gained through InnovationSpace Program. InnovationSpace Program is a year-long multidisciplinary product-design and development program hosted by Arizona State University that aims to tackle societal problems. Inspired

This study aims to find measurable approaches to achieve sustainable closed-loop supply chain. The proposed methodology here was initiated with my experience that was gained through InnovationSpace Program. InnovationSpace Program is a year-long multidisciplinary product-design and development program hosted by Arizona State University that aims to tackle societal problems. Inspired by the Design Thinking framework, I found out that much more effort would need to be done from the beginning stage of product design in order to achieve real and cohesive improvement in industries today. Thinking about the concepts of reverse logistics within supply chain and the planned obsolescence during the product design stage, I would like to come out some more efficient and measurable long-term supply chain planning for the industries, regarding its different production lines and the properties of its products.

Through the process of writing the sustainability report for InnovationSpace program, I had gained deeper understanding about applying sustainability concept into daily business procedures. As supply chain is defined as the oversight over materials, services, information and finances flowed within and among companies and industries, the new innovative supply chain management can be better adjusted according to the concern of any sustainable impact to all the stakeholders and communities. After gathering the information from industries and listening to the suggestions from academic insights, I then finalized the proposed innovative sustainability strategy for the supply chain management nowadays and I called it as Diamond Index.

Diamond Index=Avg(Environmental Stewardship+Social Responsibility +Economic Impact)^(Innovation Index)

Economic Impact (Econ)∈ [0, 10] Social Responsibility (Soc)∈[0, 10]
Environmental Stewardship (Env) ∈ [0, 10] Innovation ∈ [0, 1]
ContributorsQiang, Rubing (Author) / Boradkar, Prasad (Thesis director) / Peck, Sidnee (Committee member) / Department of Supply Chain Management (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135895-Thumbnail Image.png
Description
The purpose of this honors thesis is to discover ways for a large humanitarian organization to more cost effectively manage its fleet of vehicles. The first phase of work involved cleaning the large data set provided by the organization. Next, we used the program STATA to run a Seemingly Unrelated

The purpose of this honors thesis is to discover ways for a large humanitarian organization to more cost effectively manage its fleet of vehicles. The first phase of work involved cleaning the large data set provided by the organization. Next, we used the program STATA to run a Seemingly Unrelated Regression (SUR) to see which variables have the largest effect on the percentage of price decline and total mileage of each vehicle. The SUR model indicated that price decline is most influenced by cumulative minor repairs, total accessories, age, percentage of paved roads, and number of accidents. In addition, total mileage was most affected by percentage of paved roads, cumulative minor repairs, all wheel drive, and age. The final step of the project involved providing recommendations to the humanitarian organization based on the above results. We recommend several changes to their fleet management, including: driver training programs, increasing the amount of preventative maintenance performed on vehicles, and increasing the amount of accessories purchased for each vehicle. Implementing these changes could potentially save the organization millions of dollars due to the scope of its operation.
ContributorsPisauro, Jeffrey (Co-author) / Miller, Michael (Co-author) / Eftekhar, Mahyar (Thesis director) / Maltz, Arnold (Committee member) / Fowler, John (Committee member) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135707-Thumbnail Image.png
Description
The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this

The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this research paper specifically reflects and analyzes the first stage of this study, the poster-based messaging campaign. 6th grade students received socially relevant messaging of juniors and seniors at ASU achieving their biomedical aspirations, and received information regarding four crucial themes of biomedical engineering via daily presentations and a website. Their learning was tracked over the course of the weeklong immersion program through a pre/post assessment. This data was then analyzed through the Wilcoxon matched pairs test to determine whether the change in biomedical engineering awareness was statistically significant. It was determined that a poster-based messaging campaign indeed increased awareness of socially relevant themes within biomedical engineering, and provided researchers with tangible ways to revise the study before a second round of implementation. The next stage of the study aims to explain biomedical engineering through engaging activities that stimulate making while emphasizing design-aesthetic appeal and engineering habits of mind such as creativity, teamwork, and communication.
ContributorsSwaminathan, Swetha Anu (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135620-Thumbnail Image.png
Description
A fetus physiologically relies on blood for nutrients given by the mother. Blood supply is provided to a fetus through an umbilical cord having the structure of two pulsatile arteries with smooth muscle surrounding a thin walled vein. The two arteries transport deoxygenated blood from the fetus in the direction

A fetus physiologically relies on blood for nutrients given by the mother. Blood supply is provided to a fetus through an umbilical cord having the structure of two pulsatile arteries with smooth muscle surrounding a thin walled vein. The two arteries transport deoxygenated blood from the fetus in the direction of the placenta while the one vein transports oxygenated blood in the direction of the fetus. This process of the movement of blood is continuous throughout the gestation cycle. Conventionally, there are two arterial coils for every one coil of the vein. Undercoiling and overcoiling of the arteries leads to fetal distress, resulting in researchers to speculate that there is a relationship between these geometries with altered blood flow patterns that may be deleterious to the fetus. The fluid dynamics of an umbilical cord artery blood flow has not been extensively modeled on a computer, meaning there is an absence of knowledge on the ideal pitch of the coiling of the umbilical cord arteries. In this study, I developed computer models with ANSYS Fluent containing fluid dynamic variables and boundary conditions including: density of blood, viscosity of blood, diameter of each artery, pitch of artery coil, flow rate in each artery, and inlet velocity. Care was taken to investigate the effect of fluid finite element size, through mesh refinement, to improve accuracy of the models. The finalized models illustrate velocity and stress distribution in a coiled artery, showing different patterns in a model representing normal as compared to abnormal pitch. Further study of the fluid mechanics in the coil of the umbilical cord arteries, may elucidate the correlation between ideal pitch and fetal distress.
ContributorsSeaney, Amanda Marie (Author) / VanAuker, Michael (Thesis director) / Lilien, Lawrence (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136869-Thumbnail Image.png
Description
The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of the growing interest in saliva, this project proposes a way to analyze sodium ion concentration in a saliva solution based

The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of the growing interest in saliva, this project proposes a way to analyze sodium ion concentration in a saliva solution based on its fluorescence level when in the presence of a sodium indicator dye and recorded with a smartphone camera. The dyed sample was placed in a specially designed housing to exclude all ambient light from the images. A source light of known wavelength was used to excite the fluorescent dye and the smartphone camera images recorded the emission light wavelengths. After analysis of the images using ImageJ, it was possible to create a model to determine the level of fluorescence based on sodium ion concentration. The smartphone camera image model was compared to readings from a standard fluorescence plate recorder to test the accuracy of the model. The study found that the model was accurate within 5 % as compared to the fluorescence plate recorder. Based on the results, it was concluded that the method and resulting model proposed in this study is a valid was to analyze saliva or other solutions for their sodium ion concentration via images recorded by a smartphone camera.
ContributorsSmith, Catherine Julia (Author) / Antonio, Garcia (Thesis director) / Caplan, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136596-Thumbnail Image.png
Description
This article summarizes exploratory research conducted on private and public hospital systems in Australia and Costa Rica analyzing the trends observed within supply chain procurement. Physician preferences and a general lack of available comparative effectiveness research—both of which are challenges unique to the health care industry—were found to be barriers

This article summarizes exploratory research conducted on private and public hospital systems in Australia and Costa Rica analyzing the trends observed within supply chain procurement. Physician preferences and a general lack of available comparative effectiveness research—both of which are challenges unique to the health care industry—were found to be barriers to effective supply chain performance in both systems. Among other insights, the ability of policy to catalyze improved procurement performance in public hospital systems was also was observed. The role of centralization was also found to be fundamental to the success of the systems examined, allowing hospitals to focus on strategic rather than operational decisions and conduct value-streaming activities to generate increased cost savings.
ContributorsBudgett, Alexander Jay (Author) / Schneller, Eugene (Thesis director) / Gopalakrishnan, Mohan (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of English (Contributor)
Created2015-05
Description
Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With

Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With the MindWave and an Arduino microcontroller processor, sonic output is attained by inputting the data collected by the MindWave, and in real time, outputting code that deciphers it into user constructed sound output. The input is scaled from values 0 to 100, measuring the ‘attentive’ state of the mind by observing alpha waves, and distributing this information to the microcontroller. The output of sound comes from sourcing this into the Musical Instrument Shield and varying the musical tonality with different chords and delay of the notes. The manipulation of alpha states highlights the control or lack thereof for the performer and touches on the question of how much control over the output there really is, much like the experimentalist Alvin Lucier displayed with his concepts in brainwave music.
ContributorsQuach, Andrew Duc (Author) / Helms Tillery, Stephen (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05