Matching Items (2)
Filtering by

Clear all filters

153158-Thumbnail Image.png
Description
Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy

Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy to the home. Currently, there are a variety of approaches to INR design, which coupled with minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR design presents an inherently complex space as these systems have multiple users including stroke survivors, therapists and designers, each with their own user experience needs. This dissertation proposes that comprehensive INR design, which can address this complex user space, requires and benefits from the application of interdisciplinary research that spans motor learning and interactive learning. A methodology for integrated and iterative design approaches to INR task experience, assessment, hardware, software and interactive training protocol design is proposed within the comprehensive example of design and implementation of a mixed reality rehabilitation system for minimally supervised environments. This system was tested with eight stroke survivors who showed promising results in both functional and movement quality improvement. The results of testing the system with stroke survivors as well as observing user experiences will be presented along with suggested improvements to the proposed design methodology. This integrative design methodology is proposed to have benefit for not only comprehensive INR design but also complex interactive system design in general.
ContributorsBaran, Michael (Author) / Rikakis, Thanassis (Thesis advisor) / Olson, Loren (Thesis advisor) / Wolf, Steven L. (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
155101-Thumbnail Image.png
Description
The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three

The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three conditions. Each condition presented instructional materials using a different method, namely dynamic integrated, dynamic non-integrated, or non-dynamic non-integrated. Participants completed a short survey, pre-test, cognitive load questions, learner attitude questions, and a post-test during their experience. The results reveal that users of the dynamic integrated condition treatment showed significant improvement in both learning and efficiency. The dynamic non-integrated participants had a faster mean time to complete an assigned task, however, they also had significantly lower average test scores. There were no other significant findings in terms of cognitive load or learner attitude. Limitations, implications and future studies are discussed.
ContributorsBrown, Andrew (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2016