Matching Items (4)
Filtering by

Clear all filters

133888-Thumbnail Image.png
Description
As the prevalence and awareness of Autism Spectrum Disorder (ASD) increases, so does the variety of treatment options for primary symptoms (social interaction, communication, behavior) and secondary symptoms (anxiety, hyperactivity, GI problems, and insomnia). Various treatments, from Adderall to Citalopram to Flax Seed Oil promise relief for these symptoms. However,

As the prevalence and awareness of Autism Spectrum Disorder (ASD) increases, so does the variety of treatment options for primary symptoms (social interaction, communication, behavior) and secondary symptoms (anxiety, hyperactivity, GI problems, and insomnia). Various treatments, from Adderall to Citalopram to Flax Seed Oil promise relief for these symptoms. However, very little research has actually been done on some of these treatments. Additionally, the research that has been done fails to compare these treatments against one another in terms of symptom relief. The Autism Treatment Effectiveness Survey, written by Dr. James Adams, director of the Autism/Asperger's Research Program at ASU, and graduate student/program coordinator Devon Coleman, aims to fill this gap. The survey numerically rates medications based on benefit and adverse effects, in addition to naming specific symptoms that are impacted by the treatments. However, the survey itself was retrospective in nature and requires further evidence to support its claims. Therefore, the purpose of this research paper is to evaluate evidence related to the results of the survey. After the performing an extensive literature review of over 70 different treatments, it appears that the findings of the Autism Treatment Effectiveness Survey are generally well supported. There were a few minor discrepancies regarding the primary benefitted symptom, but there was not enough of a conflict to discount the information from the survey. As research is still ongoing, conclusions cannot yet be drawn for Nutritional Supplements, although the current data looks promising.
ContributorsAnderson, Amy Lynn (Author) / Adams, James (Thesis director) / Coleman, Devon (Committee member) / School of Nutrition and Health Promotion (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Autism Spectrum Disorder is a disorder that makes learning, socializing and daily living much more challenging for affected children and adults because of their atypical behaviors. A few examples of these behaviors are repetitive movements, impulsive actions, inability to communicate in a social setting, and many more. There is a

Autism Spectrum Disorder is a disorder that makes learning, socializing and daily living much more challenging for affected children and adults because of their atypical behaviors. A few examples of these behaviors are repetitive movements, impulsive actions, inability to communicate in a social setting, and many more. There is a stigma behind autism that is caused by those who are not well informed on the disorder. These people lack information, and in the past, it was assumed that the disorder is caused by "bad parenting." The parents are then afraid of social shame brought upon them by their child and neglect or avoid a diagnosis for their child's disorder. This becomes a vicious cycle that has negative effects on the affected individuals and their loved ones. Neglect of a diagnosis may also be caused by misinformation interpreted by the parents as their child develops. The parents do not realize this child developing outside of normal behavioral patterns. Years of research have been done to attempt to alleviate the symptoms of autism and cure the disorder. The Autism and Asperger's Program at ASU has developed a year-long dietary plan that increases supplementation to alleviate nutritional deficiencies in participants with autism. These deficiencies include vitamins, minerals, essential fatty acids, sulfate, carnitine, and digestive enzymes such as sucrase, maltase, and lactase. The participants were also put on a gluten-free casein-free diet toward the end of the study. To test the effectiveness of the treatment, the Severity of Autism Scale (SAS) and Social Responsiveness Scales (SRS) were used. The SAS tested the overall severity of ASD participants by rating them from one to ten, ten being "very severe" in terms of ASD symptoms. The results of this scale were compared at the beginning of the study (day 0) and at the end of the study (day 365). The SRS tested the social responsiveness of participants in the form of overall SRS and five subscales that included awareness, cognition, communication, motivation, and mannerisms. These results were also compared at the beginning and end of the study. After analysis of the data, there seemed to be no correlation between age and severity of autism/social responsiveness of participants. There was also no statistically significant data to suggest that there was a correlation between gender and severity of autism/social responsiveness of participants. However, there was statistically significant evidence that the treatment group did improve over the non-treatment/delayed treatment group in both the SAS and SRS. Neither age nor gender had a significant effect on the effectiveness of the treatment. These positive findings suggest that the integrated dietary
utritional therapy was beneficial, and future research on dietary treatments for autism and other disorders is recommended. This may also further discoveries of affected epigenomes with regards to nutritional treatments in disorders like ASD. The epigenome is the methylation and demethylation of the genome that mediates gene expression.
ContributorsGutgsell, Crystal Megan (Author) / Adams, James (Thesis director) / Pollard, Elena (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136633-Thumbnail Image.png
Description
Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define

Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define cancer genomes in patient samples. By isolating tumor cells from normal cells, and enriching distinct clonal populations, clinically relevant genomic aberrations that drive disease can be identified in patients in vivo. An in-depth analysis of clonal architecture and tumor heterogeneity was performed in a stage II chemoradiation-naïve breast cancer from a sixty-five year old patient. DAPI-based DNA content measurements and DNA content-based flow sorting was used to to isolate nuclei from distinct clonal populations of diploid and aneuploid tumor cells in surgical tumor samples. We combined DNA content-based flow cytometry and ploidy analysis with high-definition array comparative genomic hybridization (aCGH) and next-generation sequencing technologies to interrogate the genomes of multiple biopsies from the breast cancer. The detailed profiles of ploidy, copy number aberrations and mutations were used to recreate and map the lineages present within the tumor. The clonal analysis revealed driver events for tumor progression (a heterozygous germline BRCA2 mutation converted to homozygosity within the tumor by a copy number event and the constitutive activation of Notch and Akt signaling pathways. The highlighted approach has broad implications in the study of tumor heterogeneity by providing a unique ultra-high resolution of polyclonal tumors that can advance effective therapies and clinical management of patients with this disease.
ContributorsLaughlin, Brady Scott (Author) / Ankeny, Casey (Thesis director) / Barrett, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2015-05
136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05