Matching Items (2)
Filtering by

Clear all filters

133735-Thumbnail Image.png
Description
Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when predicting bacterial behavior and drug development. In November of 2009, Katsube et al. published their paper detailing their Pk/Pd model

Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when predicting bacterial behavior and drug development. In November of 2009, Katsube et al. published their paper detailing their Pk/Pd model for the drug Doripenem and the bacteria P. aeruginosa. In their paper, they determined that there is a dependent relationship between the drug's effectiveness and the dosing strategy of the drug. Therefore, this thesis has applied optimal control in order to optimize the drug's effectiveness, while not burdening the subject with the side effects of the drug. Optimal Control is a mathematical tool used to balance two competing factors. As a result, it has become a useful tool used to make decisions involving complex behavior. By using Optimal Control, the model will maximize the drug's effect on the bacterial population of P. aeruginosa, while minimizing the drug concentration of Doripenem. In doing so, our research will enable doctors and clinicians to maximize a drug's effectiveness on the body, while minimizing side effects.
ContributorsSawkins, Bryan Thomas (Author) / Camacho, Erika (Thesis director) / Wirkus, Stephen (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135758-Thumbnail Image.png
Description
Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species of insects, especially storage beetles, is a reliable indicator of possible contamination during storage and food processing. However, the current approach to identifying species is visual examination by human analysts; this method is rather subjective and time-consuming. Furthermore, confident identification requires extensive experience and training. To aid this inspection process, we have developed in collaboration with FDA analysts some image analysis-based machine intelligence to achieve species identification with up to 90% accuracy. The current project is a continuation of this development effort. Here we present an image analysis environment that allows practical deployment of the machine intelligence on computers with limited processing power and memory. Using this environment, users can prepare input sets by selecting images for analysis, and inspect these images through the integrated pan, zoom, and color analysis capabilities. After species analysis, the results panel allows the user to compare the analyzed images with referenced images of the proposed species. Further additions to this environment should include a log of previously analyzed images, and eventually extend to interaction with a central cloud repository of images through a web-based interface. Additional issues to address include standardization of image layout, extension of the feature-extraction algorithm, and utilizing image classification to build a central search engine for widespread usage.
ContributorsMartin, Daniel Luis (Author) / Ahn, Gail-Joon (Thesis director) / Doupé, Adam (Committee member) / Xu, Joshua (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05