Matching Items (19)
Filtering by

Clear all filters

135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135576-Thumbnail Image.png
Description
Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac

Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac tissue constructs have suffered from electrically insulated matrices and low cell retention. To address these drawbacks, we fabricated micropatterned hybrid hydrogel constructs (uniaxial microgrooves with 50 µm with) using a photocrosslinkable gelatin methacrylate (GelMA) hydrogel incorporated with gold nanorods (GNRs). The electrical impedance results revealed a lower impedance in the GelMA-GNR constructs versus the pure GelMA constructs. Superior electrical conductivity of GelMA-GNR hydrogels (due to incorporation of GNRs) enabled the hybrid tissue constructs to be externally stimulated using a pulse generator. Furthermore, GelMA-GNR tissue hydrogels were tested to investigate the biological characteristics of cultured cardiomyocytes. The F-actin fiber analysis results (area coverage and alignment indices) revealed higher directed (uniaxial) cytoskeleton organization of cardiac cells cultured on the GelMA-GNR hydrogel constructs in comparison to pure GelMA. Considerable increase in the coverage area of cardiac-specific markers (sarcomeric α-actinin and connexin 43) were observed on the GelMA-GNR hybrid constructs compared to pure GelMA hydrogels. Despite substantial dissimilarities in cell organization, both pure GelMA and hybrid GelMA-GNR hydrogel constructs provided a suitable microenvironment for synchronous beating of cardiomyocytes.
ContributorsMoore, Nathan Allen (Author) / Nikkhah, Mehdi (Thesis director) / Smith, Barbara (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134308-Thumbnail Image.png
Description
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and

Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions.
ContributorsPeela, Nitish (Author) / Nikkhah, Mehdi (Thesis director) / LaBaer, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133847-Thumbnail Image.png
Description
With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.
ContributorsUwiringiyimana, Mahoro Marie Chantal (Author) / Vernon, Brent (Thesis director) / Nikkhah, Mehdi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133879-Thumbnail Image.png
Description
In this creative project, our goal was to establish a student lead service organization dedicated to raising money and awareness for a selected medical issue through an interactive carnival event. In doing so, we were able to identify the potential obstacles and pathways that are required for service organizations within

In this creative project, our goal was to establish a student lead service organization dedicated to raising money and awareness for a selected medical issue through an interactive carnival event. In doing so, we were able to identify the potential obstacles and pathways that are required for service organizations within Arizona State University. Our experience provides a guideline for future students looking to organize charitable events on campus. This paper discusses several essential skills for running a charitable student organization, including establishing a brand, managing finances, cultivating business relationships, and marketing the cause. It is our hope that future students can learn from our experience and find success in similar endeavors.
ContributorsStoddard, Stacy Dawn (Co-author) / Wong, Brittney (Co-author) / Hultsman, Wendy (Thesis director) / Holland-Malcom, Jan (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137378-Thumbnail Image.png
Description
The Barrett, the Honors College Internships and Research Department provides information regarding internship and research position availabilities, generates greater exposure to various companies and organizations seeking student help, and offers students assistance in applying for employment. The office's current objectives are to increase student engagement and escalate student success in

The Barrett, the Honors College Internships and Research Department provides information regarding internship and research position availabilities, generates greater exposure to various companies and organizations seeking student help, and offers students assistance in applying for employment. The office's current objectives are to increase student engagement and escalate student success in internship and research involvement. The application of marketing resources requires evaluation and improvement in order to increase attendance at the events held by the office each semester, which have consistently received disappointing turnouts. This study examines the marketing communication channels currently used in order to productively correlate these channels with event attendance.
ContributorsVillemez, Hallie Katherine (Author) / Eaton, John (Thesis director) / Olsen, Doug (Committee member) / Russo, Lianne (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Department of Marketing (Contributor)
Created2013-12
136851-Thumbnail Image.png
Description
Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported

Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported and excreted from the body. Using the of morphine and a standard compartment approach this thesis aimed at projecting pharmacokinetics trends of morphine overtime. A Matlab compartment model predicting the transport of morphine through the body can contribute to a better understanding of the concentrations at the systemic level, specifically with respect to a CSF, and what happens when you compare an intravenous injection to a local delivery. Other studies and models commonly utilized patient data over small periods of time2,3,5. An extended period of time will provide information into morphine’s time course after surgery. This model focuses on a compartmentalization of the major organs and the use of a simple Mechalis-Menten enzyme kinetics for the metabolites in the liver. Our results show a CSF concentration of about 1.086×〖10〗^(-12) nmol/L in 6 weeks and 1.0097×〖10〗^(-12) nmol/L in 12 weeks. The concentration profiles in this model are similar to what was expected. The implications of this suggest that patients who reported effects of morphine paste, a locally administered opioid, weeks after the surgery were due to other reasons. In creating a model we can determine important variables and dosage information. This information allows for a greater understanding of what is happening in the body and how to improve surgical outcomes. We propose this study has implications in general research in the pharmacokinetics and dynamics of pharmacology through the body.
ContributorsJacobs, Danielle Renee (Author) / Caplan, Michael (Thesis director) / Giers, Morgan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133517-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002

Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002 to 2006 are due to TBI [8]. The brain's natural defense, the Blood Brain Barrier (BBB), prevents the entry of most substances into the brain through the blood stream, including medicines administered to treat TBI [11]. TBI may cause the breakdown of the BBB, and may result in increased permeability, providing an opportunity for NPs to enter the brain [3,4]. Dr. Stabenfeldt's lab has previously established that intravenously injected nanoparticles (NP) will accumulate near the injury site after focal brain injury [4]. The current project focuses on confirmation of the accumulation or extravasation of NPs after brain injury using 2-photon microscopy. Specifically, the project used controlled cortical impact injury induced mice models that were intravenously injected with 40nm NPs post-injury. The MATLAB code seeks to analyze the brain images through registration, segmentation, and intensity measurement and evaluate if fluorescent NPs will accumulate in the extravascular tissue of injured mice models. The code was developed with 2D bicubic interpolation, subpixel image registration, drawn dimension segmentation and fixed dimension segmentation, and dynamic image analysis. A statistical difference was found between the extravascular tissue of injured and uninjured mouse models. This statistical difference proves that the NPs do extravasate through the permeable cranial blood vessels in injured cranial tissue.
ContributorsIrwin, Jacob Aleksandr (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135804-Thumbnail Image.png
Description
Arizona State University students are currently out of the loop when it comes to hearing about events being held in their community. This is because there is no established service that provides an inclusive list of both on and near campus events. What's worse is that the current methods for

Arizona State University students are currently out of the loop when it comes to hearing about events being held in their community. This is because there is no established service that provides an inclusive list of both on and near campus events. What's worse is that the current methods for event marketing rely heavily on who one knows. Currently, ASU students hear about events through word of mouth, email chains, Facebook pages, and posters around campus. Thankfully, there is now an event marketing method that is available to everyone. UniEvents is a newly developed event service that live-tracks events around ASU's Tempe campus. UniEvents consists of a webpage that accommodates all screen sizes and is accessible by all devices including smartphones, tablets, and desktop computers. The website offers a user-friendly interface and useful features. Students are able to scan through event listings on a calendar or they can use an interactive map to find events nearest to them. Furthermore, UniEvents also offers the option for users to submit events to be advertised through the service. This way, students and organizations can easily spread the word about events on campus. Through UniEvents, ASU students will finally be able to see a conclusive list of upcoming events in one convenient site. Students will be able to save time and hassle by not having to rely on numerous sources to learn about events. UniEvents is committed to help students learn about events and get involved in campus activities!
ContributorsDeegan, Taylor (Co-author) / Nguyen, Lilian (Co-author) / Ostrom, Lonnie (Thesis director) / Schlacter, John (Committee member) / Harrington Bioengineering Program (Contributor) / Economics Program in CLAS (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135480-Thumbnail Image.png
Description
Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been

Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been shown to retain a high level of fidelity even with an acceleration factor of 5. Currently there exist several different scanner types that each have their separate analytical methods in MATLAB. A graphical user interface (GUI) was created to facilitate a single computing platform for these different scanner types in order to improve the ease and efficiency with which researchers and clinicians interact with this technique. A GUI was successfully created for both prospective and retrospective MRSI data analysis. This GUI retained the original high fidelity of the reconstruction technique and gave the user the ability to load data, load reference images, display intensity maps, display spectra mosaics, generate a mask, display the mask, display kspace and save the corresponding spectra, reconstruction, and mask files. Parallelization of the reconstruction algorithm was explored but implementation was ultimately unsuccessful. Future work could consist of integrating this parallelization method, adding intensity overlay functionality and improving aesthetics.
ContributorsLammers, Luke Michael (Author) / Kodibagkar, Vikram (Thesis director) / Hu, Harry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05