Matching Items (4)
Filtering by

Clear all filters

137399-Thumbnail Image.png
Description
The civil engineering curriculum includes the engineering fields of environmental, geotechnical, hydrology, structural, and transportation. A particular focus on the structural engineering curriculum outline involves courses in mathematics, engineering mechanics, structural analysis, and structural design. The core structural analysis and design course at Arizona State University (CEE 321) is a

The civil engineering curriculum includes the engineering fields of environmental, geotechnical, hydrology, structural, and transportation. A particular focus on the structural engineering curriculum outline involves courses in mathematics, engineering mechanics, structural analysis, and structural design. The core structural analysis and design course at Arizona State University (CEE 321) is a transition course to connect realistic structural design and analysis concepts to an engineering foundation created by the first and second year mathematics and mechanics courses. CEE 321 is styled after a flipped classroom model and students are assessed through quizzes, midterms, design projects, and a final exam. Student performance was evaluated for the Spring 2013 and Fall 2013 semesters through an error analysis technique designed to categorize student mistakes based on type of error and related topic. This analysis revealed that student's basic engineering mechanics skills improved throughout the course as well as identified the areas that students struggle in. The slope-deflection and direct stiffness methods of analysis and calculating cross-sectional properties are the primary areas of concern. Using appropriate technology in the engineering classroom has the potential to enhance the learning environment and address the areas of inadequacy identified by the performance analysis. A survey of CEE 321 students demonstrated that technology is a highly integrated and useful portion of student's lives. Therefore, the engineering classroom should reflect this. Through the use of analysis and design software, students are able to begin to develop design intuition and understanding while completing realistic engineering projects in their third year of undergraduate studies. Additionally, incorporating internet resources into and outside of the classroom allows students to be connected to course content from any web-enabled device of their choice. Lecture videos posted online covering the course content were requested by many CEE 321 students and are an emerging resource that supplements the flipped classroom model. The availability of such a tool allows students to revisit concepts that they do not understand or pause, rewind, and replay the lectures when necessary. An expansion of the structural analysis and design online lecture videos for CEE 321 are expected to address and improve the areas that students struggle in as identified by the error analysis.
ContributorsMika, Krista Nicole (Author) / Rajan, Subramaniam (Thesis director) / Mamlouk, Michael (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-12
136249-Thumbnail Image.png
Description
Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State

Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State University holds a professional development workshop titled "Engineering Practices in the Secondary Science Classroom: Engineering Training for Grade 6-12 Math and Science School Teams". This workshop provides math and science teachers with the opportunity to either sustain existing engineering proficiency or be exposed to engineering design practices for the first time. To build teachers' proficiency with employing engineering design practices, they follow a two-day curriculum designed for application in both science and math classrooms as a conjoined effort. As of spring 2015, very little feedback has been received concerning the effectiveness of the ASU-ADE workshops. New feedback methods have been developed for future deployment as past and more informal immediate feedback from teachers and students was used to create preliminary changes in the workshop curriculum. In addition, basic laboratory testing has been performed to further link together engineering problem solving with experiments and computer modelling. In improving feedback and expanding available material, the curriculum was analyzed and improved to more effectively train teachers in engineering practices and implement these practices in their classrooms.
ContributorsSchmidt, Nathan William (Author) / Rajan, Subramaniam (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
132377-Thumbnail Image.png
Description
Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way

Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way that they can understand. However, there is still very little research on how to best compose multimedia content for student use.

This project aims to determine what students struggle with in these courses and develop multimedia content to support their education in Dynamics specifically.
Created2019-05
Description
The engineers of the future are currently in the process of earning their degrees and certifications from engineering programs guided by ABET accreditations. ABET, the Accreditation Board for Engineering and Technology, is the voice of reason for the development of engineering programs. Aspiring engineers desire institutions that follow ABET Standards

The engineers of the future are currently in the process of earning their degrees and certifications from engineering programs guided by ABET accreditations. ABET, the Accreditation Board for Engineering and Technology, is the voice of reason for the development of engineering programs. Aspiring engineers desire institutions that follow ABET Standards to ensure that their education meets the expectations of industry partners and researchers. However, these standards have not been drastically altered in years to reflect the changing needs of industry. With the advancement of technology in the last two decades, old school engineering and its application is becoming less common.

Science policy and curriculum go hand in. The future engineers are taught hand calculations, lab testing for field work parallels, and methodologies based on the written policies set forth decades ago. Technology today is rapidly changing, and engineering education is struggling to make changes to keep up with these technology advancements. In today’s world, technology drives invention and innovation, whereas some argue it is thought and curiosity. Engineering programs are taking a toll regardless of the point of view. Education is not made to keep up with current societal needs.

This paper a provides an overview of the history of engineering, curriculum standards for engineering programs, an analysis of engineering programs at top universities and large universities alongside student experiences available to engineers. The ideas offered are no means the exact solution; rather policymakers and STEM education stakeholder may find the ideas shared helpful and use them as a catalyst for change.
ContributorsMinutello, Amanda Gabrielle (Author) / Loughman, Joshua (Thesis director) / Huerta, Mark (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12