Matching Items (8)
Filtering by

Clear all filters

136633-Thumbnail Image.png
Description
Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define

Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define cancer genomes in patient samples. By isolating tumor cells from normal cells, and enriching distinct clonal populations, clinically relevant genomic aberrations that drive disease can be identified in patients in vivo. An in-depth analysis of clonal architecture and tumor heterogeneity was performed in a stage II chemoradiation-naïve breast cancer from a sixty-five year old patient. DAPI-based DNA content measurements and DNA content-based flow sorting was used to to isolate nuclei from distinct clonal populations of diploid and aneuploid tumor cells in surgical tumor samples. We combined DNA content-based flow cytometry and ploidy analysis with high-definition array comparative genomic hybridization (aCGH) and next-generation sequencing technologies to interrogate the genomes of multiple biopsies from the breast cancer. The detailed profiles of ploidy, copy number aberrations and mutations were used to recreate and map the lineages present within the tumor. The clonal analysis revealed driver events for tumor progression (a heterozygous germline BRCA2 mutation converted to homozygosity within the tumor by a copy number event and the constitutive activation of Notch and Akt signaling pathways. The highlighted approach has broad implications in the study of tumor heterogeneity by providing a unique ultra-high resolution of polyclonal tumors that can advance effective therapies and clinical management of patients with this disease.
ContributorsLaughlin, Brady Scott (Author) / Ankeny, Casey (Thesis director) / Barrett, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2015-05
135836-Thumbnail Image.png
Description
To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.
ContributorsMalkoc, Aldin (Author) / Ankeny, Casey (Thesis director) / Krause, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136327-Thumbnail Image.png
Description
Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger,

Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger, Jordan, and Lande, 2015). The National Academy of Engineering has determined that leadership is a key quality for the engineer of the future (Clough, 2004). The Engineering Accreditation Commission has determined several necessary outcomes for engineering students that coincide with leadership roles (Engineering Accreditation Commission, 2012). Proactiveness, confidence, motivation, communication, coaching will be important skills for engineers so that they can effectively lead teams, adjust to change, and synthesize (Ahn, Cox, London, Cekic, and Zhu, 2014). In National Academy of Engineering's The Engineer of 2020 (Clough, 2004) future engineers are expected to be in position to influence "in the making of public policy and in the administration of government and industry." The Maker community offers a broad spectrum of individuals engaged in informal engineering and tinkering activities across multiple pathways (Foster, Wigner, Lande, and Jordan, 2015). This study explores leadership using a theoretical framework of competing values (Quinn, 1988) (Zafft, Adams, and Matkin, 2009) including relating to people, managing processes, leading change, and producing results. The study relies upon artifact elicitation (based on photo elicitation (Harper, 2002)) with 40 of these Makers at four Maker Faires in the United States. The artifact elicitation interviews were conducted at the Maker Faires in front of participants' inventions, where the Makers were asked to describe the invention and the process behind it. Using a theoretical framework of competing values (Quinn, 1988) (Quinn, Faerman, Thompson, and McGrath, 1990) and through parallel inductive-deductive analysis, the emergent themes among our sample of Makers include that they express leadership qualities of (1) innovators \u2014 they utilize different skillsets to develop unique products and solutions; (2) monitors \u2014 they evaluate projects and respond to results; (3) directors \u2014 they set goals and expectations of their projects and processes; and (4) producers \u2014 they are determined and possess a personal drive. From the findings a call to action is made on implementing leadership lessons in the engineering classroom.
ContributorsOplinger, James Logan (Author) / Lande, Micah (Thesis director) / Jordan, Shawn (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
133414-Thumbnail Image.png
Description
Adaptive expertise is a model of learning that posits two dimensions of development: efficiency and innovation. The mindset of an adaptive expert will serve any engineer by drawing upon diverse experiences to develop novel solutions to problems. Their mindset is based in lifelong learning, characterized by applying past experience to

Adaptive expertise is a model of learning that posits two dimensions of development: efficiency and innovation. The mindset of an adaptive expert will serve any engineer by drawing upon diverse experiences to develop novel solutions to problems. Their mindset is based in lifelong learning, characterized by applying past experience to current design challenges. Solution design requires a process, and a breadth of experience is among the adaptive expert's greatest tools in identifying the approach to take in an unfamiliar situation. The fluidity and agility of their mind allows them to work effectively throughout their career in technical design, as the situation of an engineer's design work can vary drastically over the course of time. This paper describes a study on an innovative junior-level electrical and robotic systems project course taught at a large southwestern university that encourages students to develop adaptive expertise in the context of real-world design projects. By fabricating prototypes, students learn strategies for troubleshooting and technical design, and iterations of the part demand reflection on previous design thinking. This study seeks to answer the following research questions: (1) How does user-centered design stimulate abstractive design thinking? (2) How does fabrication of prototypes stimulate active design thinking? And (3) How is the classroom culture enabling engineering design in the optimal adaptability corridor? Critical incident interviews were conducted with stakeholders in the course, and a thematic analysis of the transcripts conducted. Results show that this project-based curriculum fosters adaptive expertise by stimulating both abstractive and active design thinking. This provides a framework for practicing adaptive design thinking in classrooms. Disseminating these findings to curriculum designers will encourage more engaging, effective classes that graduate adaptive experts.
ContributorsLarson, James Robert (Author) / Jordan, Shawn (Thesis director) / Lande, Micah (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134378-Thumbnail Image.png
Description
Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many

Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many other institutions, has long since provided career support and promoted internships as an excellent work experience option before graduation. The decision to formalize a cooperative education program speaks to a need for a more rigorous path to work experience for engineering students. This paper is an investigation into the barriers and enablers behind a young cooperative education program. These results indicate that while students do benefit from the program, growth of the program may be tied to creating a meaningful distinction between cooperative education and other learning opportunities.
ContributorsGolka, Margaret (Author) / Jordan, Shawn (Thesis director) / Morrell, Darryl (Committee member) / W. P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133057-Thumbnail Image.png
Description
The purpose of this paper is to develop an understanding of Navajo students' perspectives on how engineering can be used to improve life in their own communities on the Navajo reservation. Branching off an existing study that aims to develop a culturally-contextualized engineering design curriculum for middle schools in the

The purpose of this paper is to develop an understanding of Navajo students' perspectives on how engineering can be used to improve life in their own communities on the Navajo reservation. Branching off an existing study that aims to develop a culturally-contextualized engineering design curriculum for middle schools in the Navajo Nation, this research focuses on a curriculum module entitled, "Future Chapter Presidents". This module is inspired by the Future City Competition where middle school students are tasked with imagining a better future. To make "Future Chapter Presidents" more culturally-relevant, students are instead tasked with proposing solutions that will improve life on the reservation. This module emphasizes engineering design alongside teaching Navajo Nation government standards by having students in the class run for a position in their local government. Students are prompted with creating a campaign poster that showcases their proposed solutions directed at their own communities. In order to analyze students' perspectives and understanding of how engineering can be used to improve life on the reservation, thematic analysis is used to study each individual poster. Meanwhile, because the researchers conducting this study are not Navajo, Tribal Critical Race Theory (Brayboy, 2006) was applied to ensure that the content of the posters are interpreted from an Indigenous lens. The results of this study can be used to inform future curriculum development for engineering design modules in the Navajo Nation and expand upon existing literature that provides understanding of how Navajo students experience and understand engineering in the context of their culture.
ContributorsPangan, Tyrine Jamella Duenas (Author) / Jordan, Shawn (Thesis director) / Foster, Christina (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134866-Thumbnail Image.png
Description
Flipped classrooms invert the traditional teaching methods and deliver the lecture online outside of the classroom. An increase in technology accessibility is increasing the prevalence of this teaching technique in universities. In this study, we aim to address some of the uncertainties of a flipped classroom by implementing a new

Flipped classrooms invert the traditional teaching methods and deliver the lecture online outside of the classroom. An increase in technology accessibility is increasing the prevalence of this teaching technique in universities. In this study, we aim to address some of the uncertainties of a flipped classroom by implementing a new lecture format in Transport Phenomena. Transport Phenomena is a junior level biomedical engineering course originally flipped in Spring 2013. Since transitioning to a flipped classroom, students have been required to watch 75-minute lectures outside of class where the instructor covered key concepts and examples using paper and marker on a document camera. In class, students then worked in groups to solve problems with instructor and teaching assistant feedback. Students also completed self-graded homework with the opportunity to earn lost points back by discussing fundamental misconceptions. We are introducing re-formatted mini lectures that contain the same content broken down as well as example problems worked out in a tutorial technique instead of traditional solving method. The purpose of this study is to determine the effectiveness of newly created mini lectures with integrated questions and links in terms of student achievement and attitude [interest, utility, and "cost" (time, effort, and emotion)].
ContributorsBrenna, Samantha Paige (Author) / Ankeny, Casey (Thesis director) / Caplan, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154443-Thumbnail Image.png
Description
This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM).

This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM). The study was directed by two research questions: (1) What are the lived and told stories of Native women in engineering and technology who are leading initiatives to improve their Native communities and (2) How do Native women’s understandings of their identities influence their work and acts of leadership? The study employed narrative inquiry as the methodological framework and was guided by theoretical frameworks of identities as constructed, multiple, and intersectional (Crenshaw, 1989; Tajfel & Turner, 1979), hybridity, and “third spaces” (Bhabha, 2012). The inquiry was also informed by feminist theories of Native scholars (Green, 1983; Kidwell, 1978) and engineering education (Beddoes & Borrego, 2011; Riley, Pawley, Tucker, & Catalano, 2009). The narrative analysis presented three narratives, based upon interviews, field notes, observations, and documents: (1) the story of a Navajo woman working within a large technical corporation (Jaemie); (2) the story of an Akimel O’odham-Mexican woman working within a tribally-owned technical business (Mia); and (3) the story of a Navajo woman growing her own technical business (Catherine). The narratives revealed a series of impactful transitions that enabled Jaemie, Mia, and Catherine to work and lead in engineering and technology. The transitions revolved around themes of becoming professionals, encountering and overcoming hardship, seeking to connect and contribute to Natives through work, leading change for their Native communities, and advancing their professional selves and their Native communities. Across the transitions, a transformation emerged from cultural navigation to leadership for the creation of new hybrid spaces that represented innovative sites of opportunity for Native communities. The strength of the Native spaces enabled Jaemie, Mia, and Catherine to leverage their identities as Native women within the global context of engineering and technology. The narratives denote the power of story by contributing the depth and richness of lived realities in engineering and technology.
ContributorsFoster, Christina Hobson (Author) / Jordan, Shawn (Thesis advisor) / Fixico, Donald (Committee member) / Lande, Micah (Committee member) / McKenna, Anna (Committee member) / Arizona State University (Publisher)
Created2016