Matching Items (5)
Filtering by

Clear all filters

150329-Thumbnail Image.png
Description
The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum

The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum forcing in the vicinity of the boundary. The flow solver is parallelized using a domain decomposition strategy and message passing interface (MPI), and exhibits linear scaling on as many as 500 processors. A laminar flow case is presented to verify the formal accuracy of the method. The immersed boundary approach is validated by comparison with computations of the flow over a smooth sphere. Simulations are performed at Reynolds numbers of 2.5 × 104 and 1.1 × 105 based on the diameter of the ball and the freestream speed and using grids comprised of more than 1.14 × 109 points. Flow visualizations reveal the location of separation, as well as the delay of complete detachment. Predictions of the aerodynamic forces at both Reynolds numbers are in reasonable agreement with measurements. Energy spectra of the velocity quantify the dominant frequencies of the flow near separation and in the wake. Time-averaged statistics reveal characteristic physical patterns in the flow as well as local trends within dimples. A mechanism of drag reduction due to the dimples is confirmed, and metrics for dimple optimization are proposed.
ContributorsSmith, Clinton E (Author) / Squires, Kyle D (Thesis advisor) / Balaras, Elias (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Stanzione, Daniel C (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
134360-Thumbnail Image.png
Description
The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE).

The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE). This research report presents an analysis of the effects of making engineering education socially relevant, interesting and accessible. High school students participated in a learning experience in which they designed flood evacuation systems that could warn a city of incoming floods. Both pre-assessments and post-assessments were implemented to capture students' awareness of engineering tasks and their interest levels in engineering tasks. Data on students' perceptions of specific engineering tasks were analyzed quantitatively through Wilcoxon signed-rank testing and determined that the program had significant positive effects on developing more accurate conceptions of engineering tasks. The results relating to student interest in CSE indicated that there was an increased level of interest in CSE engineering tasks after the program. There was a 14% increase in number of students who found engineering tasks interesting from 64% to 78%. However, as participants self-selected to participate in this learning experience, many students had positive perceptions of engineering tasks prior to engaging in the learning experience. This study was successful and met both of its primary goals of enhancing awareness and interest in engineering in this particular group of high school students.
ContributorsRidhwaan, Syed (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135707-Thumbnail Image.png
Description
The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this

The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this research paper specifically reflects and analyzes the first stage of this study, the poster-based messaging campaign. 6th grade students received socially relevant messaging of juniors and seniors at ASU achieving their biomedical aspirations, and received information regarding four crucial themes of biomedical engineering via daily presentations and a website. Their learning was tracked over the course of the weeklong immersion program through a pre/post assessment. This data was then analyzed through the Wilcoxon matched pairs test to determine whether the change in biomedical engineering awareness was statistically significant. It was determined that a poster-based messaging campaign indeed increased awareness of socially relevant themes within biomedical engineering, and provided researchers with tangible ways to revise the study before a second round of implementation. The next stage of the study aims to explain biomedical engineering through engaging activities that stimulate making while emphasizing design-aesthetic appeal and engineering habits of mind such as creativity, teamwork, and communication.
ContributorsSwaminathan, Swetha Anu (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135488-Thumbnail Image.png
Description
This thesis focused on verifying previous literature and research that has been conducted on different spherical objects. Mainly, verifying literature that examines both how surface roughness contributes to the overall drag and how wake turbulence is affected by different surface roughness. The goal of this project is to be able

This thesis focused on verifying previous literature and research that has been conducted on different spherical objects. Mainly, verifying literature that examines both how surface roughness contributes to the overall drag and how wake turbulence is affected by different surface roughness. The goal of this project is to be able to capture data that shows that the flow transition from laminar to turbulent occurs at lower Reynolds numbers for a rough spherical object rather than a perfectly smooth sphere. In order to achieve this goal, both force balance testing and hot-wire testing were conducted in the Aero-lab complex in USE170. The force balance was mounted and used in the larger wind tunnel while the hot-wire probe was mounted and used in the smaller wind tunnel. Both of the wind tunnels utilized LABVIEW software in order to collect and convert the qualitative values provided by the testing probes and equipment. The two main types of testing equipment that were used in this project were the force balance and the hot-wire probe. The overall results from the experiment were inconclusive based on the limitations of both the testing probes and the testing facility itself. Overall, the experiment yielded very limited results due to these limitations.
ContributorsMilroy, Maxwell (Author) / Takahashi, Timothy (Thesis director) / Adrian, Ronald (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Particle Image Velocimetry (PIV) has become a cornerstone of modern experimental fluid mechanics due to its unique ability to resolve the entire instantaneous two-dimensional velocity field of an experimental flow. However, this methodology has historically been omitted from undergraduate curricula due to the significant cost of research-grade PIV systems and

Particle Image Velocimetry (PIV) has become a cornerstone of modern experimental fluid mechanics due to its unique ability to resolve the entire instantaneous two-dimensional velocity field of an experimental flow. However, this methodology has historically been omitted from undergraduate curricula due to the significant cost of research-grade PIV systems and safety considerations stemming from the high-power Nd-YAG lasers typically implemented by PIV systems. In the following undergraduate thesis, a low-cost model of a PIV system is designed to be used within the context of an undergraduate fluid mechanics lab. The proposed system consists of a Hele-Shaw water tunnel, a high-power LED lighting source, and a modern smartphone camera. Additionally, a standalone application was developed to perform the necessary image processing as well as to perform Particle Streak Velocimetry (PSV) and PIV image analysis. Ultimately, the proposed system costs $229.33 and can replicate modern PIV techniques albeit for simple flow scenarios.

ContributorsZamora, Matthew Alan (Author) / Adrian, Ronald (Thesis director) / Kim, Jeonglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05