Matching Items (5)
Filtering by

Clear all filters

154110-Thumbnail Image.png
Description
Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task

Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task (symmetry span) was modified so that negative arousing images or neutral images subtended the background during the encoding phase. Across three experiments, negative arousing images impaired working memory encoding relative to neutral images, resulting in impoverished symmetry span scores. Additionally, in Experiment 3, both negative and arousing images captured attention and led to increased hit rates in a subsequent recognition task. Contrary to the primary hypothesis, individual differences in working memory capacity derived from three complex span tasks failed to moderate the effect of negative arousing images on working memory encoding across two large scale studies. Implications for theories of working memory and attention control in emotional contexts will be discussed.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / Amazeen, Eric (Committee member) / Killeen, Peter (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
Description
The need to fully understand the possible consequences of young-adult cannabis use has become increasingly critical as a result of major cannabis policy changes. The purpose of this study was to determine if young-adult users exhibit cognitive deficits on laboratory-based tests and memory and attention deficits in everyday life. Participants

The need to fully understand the possible consequences of young-adult cannabis use has become increasingly critical as a result of major cannabis policy changes. The purpose of this study was to determine if young-adult users exhibit cognitive deficits on laboratory-based tests and memory and attention deficits in everyday life. Participants were 152 students from a large U.S. university enrolled in introductory psychology courses and the top and bottom 10% of the 12-item Yale University PRIME Screening Test for psychotic-like experiences. Participants were asked about their cannabis use and were given six cognitive tests spanning executive function and memory. To test functional impairment in memory and attention, participants were asked to nominate informants (people who knew them well) and these rated the participants on an attention problems scale of four items and a memory problems scale of three items. Results showed that individuals who used cannabis more frequently were rated as having more attention and memory problems and that, consistent with prior research, more frequent cannabis use was associated with worse memory test performance, though the association was not present between frequency of use and executive function test performance. Additionally, it was found that informant-reported attention problems were associated with poorer performance on two of the executive function cognitive tests. The present findings suggest that individuals who use cannabis more frequently experience noticeable memory and attention problems in everyday life, despite the lack of significant correlation between this functional impairment and cognitive test performance. Informant reports, therefore, may be useful in future research for understanding or predicting cognitive impairment in young adults.
ContributorsCarbajal, Lucia (Author) / Meier, Madeline (Thesis director) / McClure, Samuel (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137833-Thumbnail Image.png
Description
Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only

Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only children and older adults benefitted. The present study investigated whether college-aged students benefit from speaking aloud while performing a fluid intelligence test. Subjects performed a battery of working memory and intelligence tasks silently. Once they had completed each task, the participants took them again, though this time they spoke aloud while completing the tests. Results showed that subjects did insignificantly worse on the working memory tests when speaking aloud. However, subjects performed significantly better on the measures of fluid intelligence while speaking aloud as opposed to doing them silently. At an individual differences level, low working memory capacity participants benefited more from speaking aloud than the high working memory ones. Finally, we found a positive correlation between working memory scores and fluid intelligence scores, offering further evidence that the two constructs are related, yet different.
ContributorsRice, Z. Douglas (Author) / Brewer, Gene (Thesis director) / Duch, Carsten (Committee member) / Ball, Hunter (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
156674-Thumbnail Image.png
Description
Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and

Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and fluid intelligence. Experiments 1 and 2 were designed to assess whether individual differences in strategic behavior contribute to the variance shared between working memory capacity and fluid intelligence. In Experiment 3, competing theories for describing the underlying processes (cognitive vs. strategy) were evaluated in a comprehensive examination of potential underlying mechanisms. These data help inform existing theories about the mechanisms underlying the relation between WMC and gF. However, these data also indicate that the current theoretical model of the shared variance between WMC and gF would need to be revised to account for the data in Experiment 3. Possible sources of misfit are considered in the discussion along with a consideration of the theoretical implications of observing those relations in the Experiment 3 data.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / McNamara, Danielle (Thesis advisor) / McClure, Samuel (Committee member) / Redick, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
168430-Thumbnail Image.png
Description
T-cells are an integral component of the immune system, enabling the body to distinguish between pathogens and the self. The primary mechanism which enables this is their T-cell receptors (TCR) which bind to antigen epitopes foreign to the body. This detection mechanism allows the T-cell to determine when an immune

T-cells are an integral component of the immune system, enabling the body to distinguish between pathogens and the self. The primary mechanism which enables this is their T-cell receptors (TCR) which bind to antigen epitopes foreign to the body. This detection mechanism allows the T-cell to determine when an immune response is necessary. The computational prediction of TCR-epitope binding is important to researchers for both medical applications and for furthering their understanding of the biological mechanisms that impact immunity. Models which have been developed for this purpose fail to account for the interrelationships between amino acids and demonstrate poor out-of-sample performance. Small changes to the amino acids in these protein sequences can drastically change their structure and function. In recent years, attention-based deep learning models have shown success in their ability to learn rich contextual representations of data. To capture the contextual biological relationships between the amino acids, a multi-head self-attention model was created to predict the binding affinity between given TCR and epitope sequences. By learning the structural nuances of the sequences, this model is able to improve upon existing model performance and grant insights into the underlying mechanisms which impact binding.
ContributorsCai, Michael Ray (Author) / Lee, Heewook (Thesis advisor) / Bang, Seojin (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2021