Matching Items (5)
Filtering by

Clear all filters

151721-Thumbnail Image.png
Description
Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and

Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and error responses, reaction times, and accuracy. Accuracy and reaction times were analyzed in terms of memory load (task condition), number of repetitions, effect of high vs. low print-frequency, and correlations with working memory span. Multinomial tree analyses were also completed to investigate source vs. item memory and revealed a mirror effect in episodic memory experiments (source memory), but a frequency advantage in span tasks (item memory). Interestingly enough, we did not observe an advantage for high working memory span individuals in frequency judgments, even when participants split their attention during the dual task (similar to a complex span task). However, we concluded that both the amount of attentional resources allocated and prior experience with an item affect how it is stored in memory.
ContributorsPeterson, Megan Paige (Author) / Azuma, Tamiko (Thesis advisor) / Gray, Shelley (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2013
154110-Thumbnail Image.png
Description
Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task

Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task (symmetry span) was modified so that negative arousing images or neutral images subtended the background during the encoding phase. Across three experiments, negative arousing images impaired working memory encoding relative to neutral images, resulting in impoverished symmetry span scores. Additionally, in Experiment 3, both negative and arousing images captured attention and led to increased hit rates in a subsequent recognition task. Contrary to the primary hypothesis, individual differences in working memory capacity derived from three complex span tasks failed to moderate the effect of negative arousing images on working memory encoding across two large scale studies. Implications for theories of working memory and attention control in emotional contexts will be discussed.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / Amazeen, Eric (Committee member) / Killeen, Peter (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
156857-Thumbnail Image.png
Description
Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our

Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our lab suggests that varying the prevalence of cue-colored targets does not attenuate the visual confirmation bias, although people still fail to detect rare targets regardless of whether they match the initial cue (Walenchok et al. under review). The present investigation examines the boundary conditions of the visual confirmation bias under conditions of equal, low, and high cued-target frequency. Across experiments, I found that: (1) People are strongly susceptible to the low-prevalence effect, often failing to detect rare targets regardless of whether they match the cue (Wolfe et al., 2005). (2) However, they are still biased to seek cue-colored stimuli, even when such targets are rare. (3) Regardless of target prevalence, people employ strategies when search is made sufficiently burdensome with distributed items and large search sets. These results further support previous findings that the low-prevalence effect arises from a failure to perceive rare items (Hout et al., 2015), while visual confirmation bias is a bias of attentional guidance (Rajsic et al., 2015, 2017).
ContributorsWalenchok, Stephen Charles (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Hout, Michael C (Committee member) / McClure, Samuel M. (Committee member) / Arizona State University (Publisher)
Created2018
157084-Thumbnail Image.png
Description
Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of

Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of attention (alerting, orienting, executive control) were measured in persons with aphasia and matched-controls using visual and auditory versions of the well-studied Attention Network Test. Experiment 1b then explored the neural resources supporting each component of attention in the visual and auditory modalities in chronic stroke participants. The results from Experiment 1a indicate that alerting, orienting, and executive control are uniquely affected by presentation modality. The lesion-symptom mapping results from Experiment 1b associated the left angular gyrus with visual executive control, the left supramarginal gyrus with auditory alerting, and Broca’s area (pars opercularis) with auditory orienting attention post-stroke. Overall, these findings indicate that perceptual modality may impact the lateralization of some aspects of attention, thus auditory attention may be more susceptible to impairment after a left hemisphere stroke.

Prosody, rhythm and pitch changes associated with spoken language may improve spoken language comprehension in persons with aphasia by recruiting intact cognitive abilities (e.g., attention and working memory) and their associated non-lesioned brain regions post-stroke. Therefore, Experiment 2 explored the relationship between cognition, two unique prosody manipulations, lesion location, and auditory sentence comprehension in persons with chronic stroke and matched-controls. The combined results from Experiment 2a and 2b indicate that stroke participants with better auditory orienting attention and a specific left fronto-parietal network intact had greater comprehension of sentences spoken with sentence prosody. For list prosody, participants with deficits in auditory executive control and/or short-term memory and the left angular gyrus and globus pallidus relatively intact, demonstrated better comprehension of sentences spoken with list prosody. Overall, the results from Experiment 2 indicate that following a left hemisphere stroke, individuals need good auditory attention and an intact left fronto-parietal network to benefit from typical sentence prosody, yet when cognitive deficits are present and this fronto-parietal network is damaged, list prosody may be more beneficial.
ContributorsLaCroix, Arianna (Author) / Rogalsky, Corianne (Thesis advisor) / Azuma, Tamiko (Committee member) / Braden, B. Blair (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2019
156674-Thumbnail Image.png
Description
Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and

Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and fluid intelligence. Experiments 1 and 2 were designed to assess whether individual differences in strategic behavior contribute to the variance shared between working memory capacity and fluid intelligence. In Experiment 3, competing theories for describing the underlying processes (cognitive vs. strategy) were evaluated in a comprehensive examination of potential underlying mechanisms. These data help inform existing theories about the mechanisms underlying the relation between WMC and gF. However, these data also indicate that the current theoretical model of the shared variance between WMC and gF would need to be revised to account for the data in Experiment 3. Possible sources of misfit are considered in the discussion along with a consideration of the theoretical implications of observing those relations in the Experiment 3 data.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / McNamara, Danielle (Thesis advisor) / McClure, Samuel (Committee member) / Redick, Thomas (Committee member) / Arizona State University (Publisher)
Created2018