Matching Items (5)
Filtering by

Clear all filters

151721-Thumbnail Image.png
Description
Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and

Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and error responses, reaction times, and accuracy. Accuracy and reaction times were analyzed in terms of memory load (task condition), number of repetitions, effect of high vs. low print-frequency, and correlations with working memory span. Multinomial tree analyses were also completed to investigate source vs. item memory and revealed a mirror effect in episodic memory experiments (source memory), but a frequency advantage in span tasks (item memory). Interestingly enough, we did not observe an advantage for high working memory span individuals in frequency judgments, even when participants split their attention during the dual task (similar to a complex span task). However, we concluded that both the amount of attentional resources allocated and prior experience with an item affect how it is stored in memory.
ContributorsPeterson, Megan Paige (Author) / Azuma, Tamiko (Thesis advisor) / Gray, Shelley (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2013
156857-Thumbnail Image.png
Description
Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our

Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our lab suggests that varying the prevalence of cue-colored targets does not attenuate the visual confirmation bias, although people still fail to detect rare targets regardless of whether they match the initial cue (Walenchok et al. under review). The present investigation examines the boundary conditions of the visual confirmation bias under conditions of equal, low, and high cued-target frequency. Across experiments, I found that: (1) People are strongly susceptible to the low-prevalence effect, often failing to detect rare targets regardless of whether they match the cue (Wolfe et al., 2005). (2) However, they are still biased to seek cue-colored stimuli, even when such targets are rare. (3) Regardless of target prevalence, people employ strategies when search is made sufficiently burdensome with distributed items and large search sets. These results further support previous findings that the low-prevalence effect arises from a failure to perceive rare items (Hout et al., 2015), while visual confirmation bias is a bias of attentional guidance (Rajsic et al., 2015, 2017).
ContributorsWalenchok, Stephen Charles (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Hout, Michael C (Committee member) / McClure, Samuel M. (Committee member) / Arizona State University (Publisher)
Created2018
157084-Thumbnail Image.png
Description
Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of

Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of attention (alerting, orienting, executive control) were measured in persons with aphasia and matched-controls using visual and auditory versions of the well-studied Attention Network Test. Experiment 1b then explored the neural resources supporting each component of attention in the visual and auditory modalities in chronic stroke participants. The results from Experiment 1a indicate that alerting, orienting, and executive control are uniquely affected by presentation modality. The lesion-symptom mapping results from Experiment 1b associated the left angular gyrus with visual executive control, the left supramarginal gyrus with auditory alerting, and Broca’s area (pars opercularis) with auditory orienting attention post-stroke. Overall, these findings indicate that perceptual modality may impact the lateralization of some aspects of attention, thus auditory attention may be more susceptible to impairment after a left hemisphere stroke.

Prosody, rhythm and pitch changes associated with spoken language may improve spoken language comprehension in persons with aphasia by recruiting intact cognitive abilities (e.g., attention and working memory) and their associated non-lesioned brain regions post-stroke. Therefore, Experiment 2 explored the relationship between cognition, two unique prosody manipulations, lesion location, and auditory sentence comprehension in persons with chronic stroke and matched-controls. The combined results from Experiment 2a and 2b indicate that stroke participants with better auditory orienting attention and a specific left fronto-parietal network intact had greater comprehension of sentences spoken with sentence prosody. For list prosody, participants with deficits in auditory executive control and/or short-term memory and the left angular gyrus and globus pallidus relatively intact, demonstrated better comprehension of sentences spoken with list prosody. Overall, the results from Experiment 2 indicate that following a left hemisphere stroke, individuals need good auditory attention and an intact left fronto-parietal network to benefit from typical sentence prosody, yet when cognitive deficits are present and this fronto-parietal network is damaged, list prosody may be more beneficial.
ContributorsLaCroix, Arianna (Author) / Rogalsky, Corianne (Thesis advisor) / Azuma, Tamiko (Committee member) / Braden, B. Blair (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2019
Description
To localize different sound sources in an environment, the auditory system analyzes acoustic properties of sounds reaching the ears to determine the exact location of a sound source. Successful sound localization is important for improving signal detection and speech intelligibility in a noisy environment. Sound localization is not a uni-sensory

To localize different sound sources in an environment, the auditory system analyzes acoustic properties of sounds reaching the ears to determine the exact location of a sound source. Successful sound localization is important for improving signal detection and speech intelligibility in a noisy environment. Sound localization is not a uni-sensory experience, and can be influenced by visual information (e.g., the ventriloquist effect). Vision provides contexts and organizes the auditory space for the auditory system. This investigation tracks eye movement of human subjects using a non-invasive eye-tracking system and evaluates the impact of visual stimulation on localization of a phantom sound source generated through timing-based stereophony. It was hypothesized that gaze movement could reveal the way in which visual stimulation (LED lights) shifts the perception of a sound source. However, the results show that subjects do not always move their gaze towards the light direction even when they experience strong visual capture. On average, the gaze direction indicates the perceived sound location with and without light stimulation.
ContributorsFlores, Nancy Gloria (Author) / Zhou, Yi (Thesis director) / Azuma, Tamiko (Committee member) / Department of Speech and Hearing Science (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132118-Thumbnail Image.png
Description
Purpose: Children with attention-deficit/hyperactivity disorder (ADHD) have been found to have central executive deficits in working memory as well as less academic success than children with typical development. The purpose of this study was to determine which components of central executive function were most closely related to parental rating scores

Purpose: Children with attention-deficit/hyperactivity disorder (ADHD) have been found to have central executive deficits in working memory as well as less academic success than children with typical development. The purpose of this study was to determine which components of central executive function were most closely related to parental rating scores of attention.
Method: Two hundred twenty three 2nd graders with typical development, dyslexia, developmental language disorder (DLD), or dyslexia/DLD completed three central executive tasks from the Comprehensive Assessment Battery for Children–Working Memory (Gray, Alt, Hogan, Green, & Cowan, n.d.). Parents of the children completed the ADHD Rating Scale-IV: Home Version for their child. None of the participants had been diagnosed with ADD/ADHD
Results: When diagnostic group performance was compared we found significant differences on each central executive task. When ADHD group performance was compared we found a significant between-group performance only on the n-back visual task with the high-risk group scoring lower than the other two groups. ADHD rating scores predicted a significant amount of variance for each central executive task, but percentages were small (3%-6%).
Discussion: Working memory is known to be related to attention control. Stronger attentional control is associated with a higher working memory performance. Our study showed that children most at risk for ADD/ADHD based on parent ratings scored lowest on the visuospatial task, likely because rehearsal of visuospatial information is not possible so relies more heavily on attention. This study is a step toward considering how attention affects working memory performance so that both can be considered when designing instruction and interventions.
ContributorsCleveland, Alexandra (Author) / Gray, Shelley (Thesis director) / Azuma, Tamiko (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12