Matching Items (15)
Filtering by

Clear all filters

152687-Thumbnail Image.png
Description
Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to this study. Also for fundamental scientific investigations in general and for some applications such as brain machine interface, the recorded neural waveforms need to be analyzed first to identify neural action potentials as basic computing units. Prior to analyzing and modeling the recorded neural signals, this dissertation proposes an advanced spike sorting system, the M-Sorter, to extract the action potentials from raw neural waveforms. The M-Sorter shows better or comparable performance compared with two other popular spike sorters under automatic mode. With the sorted action potentials in place, neuronal activity in the AGm and AGl areas in rats during learning of a directional choice task is examined. Systematic analyses suggest that rat's neural activity in AGm and AGl was modulated by previous trial outcomes during learning. Single unit based neural dynamics during task learning are described in detail in the dissertation. Furthermore, the differences in neural modulation between fast and slow learning rats were compared. The results show that the level of neural modulation of previous trial outcome is different in fast and slow learning rats which may in turn suggest an important role of previous trial outcome encoding in learning.
ContributorsYuan, Yu'an (Author) / Si, Jennie (Thesis advisor) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2014
152691-Thumbnail Image.png
Description
Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and

Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and a neural network adapt as learning progresses. In this dissertation, single units in the medial and lateral agranular (AGm and AGl) cortices were recorded as rats learned a directional choice task. The task required the rat to make a left/right side lever press if a light cue appeared on the left/right side of the interface panel. Behavior analysis showed that rat's movement parameters during performance of directional choices became stereotyped very quickly (2-3 days) while learning to solve the directional choice problem took weeks to occur. The entire learning process was further broken down to 3 stages, each having similar number of recording sessions (days). Single unit based firing rate analysis revealed that 1) directional rate modulation was observed in both cortices; 2) the averaged mean rate between left and right trials in the neural ensemble each day did not change significantly among the three learning stages; 3) the rate difference between left and right trials of the ensemble did not change significantly either. Besides, for either left or right trials, the trial-to-trial firing variability of single neurons did not change significantly over the three stages. To explore the spatiotemporal neural pattern of the recorded ensemble, support vector machines (SVMs) were constructed each day to decode the direction of choice in single trials. Improved classification accuracy indicated enhanced discriminability between neural patterns of left and right choices as learning progressed. When using a restricted Boltzmann machine (RBM) model to extract features from neural activity patterns, results further supported the idea that neural firing patterns adapted during the three learning stages to facilitate the neural codes of directional choices. Put together, these findings suggest a spatiotemporal neural coding scheme in a rat AGl and AGm neural ensemble that may be responsible for and contributing to learning the directional choice task.
ContributorsMao, Hongwei (Author) / Si, Jennie (Thesis advisor) / Buneo, Christopher (Committee member) / Cao, Yu (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2014
135402-Thumbnail Image.png
Description
It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of

It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of hitting nine putts spaced uniformly around a hole each five feet away. Data was collected at three time periods, before, during and after the putt. Galvanic Skin Response (GSR) measurements were also recorded on each subject. Three of the subjects performed a visualization of the same putting drill and their brain waves and GSR were recorded and then compared with their actual performance of the drill. EEG data in the Theta (4 \u2014 7 Hz) bandwidth and Alpha (7 \u2014 13 Hz) bandwidth in 11 different locations across the head were analyzed. Relative power spectrum was used to quantify the data. From the results, it was found that there is a higher magnitude of power in both the theta and alpha bandwidths for a missed putt in comparison to a made putt (p<0.05). It was also found that there is a higher average power in the right hemisphere for made putts. There was not a higher power in the occipital region of the brain nor was there a lower power level in the frontal cortical region during made putts. The hypothesis that there would be a difference between the means of the power level in performance compared to visualization techniques was also supported.
ContributorsCarpenter, Andrea (Co-author) / Hool, Nicholas (Co-author) / Muthuswamy, Jitendran (Thesis director) / Crews, Debbie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
155864-Thumbnail Image.png
Description
The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing

The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing object roll. Unexpected perturbations were

controlled by switching weights between trials, expected perturbations were controlled by

asking subjects to rotate the object themselves. In all cases subjects were able to

minimize the roll of the object within three trials. Eye fixations were correlated with

object weight for the initial context and for known shifts in center of mass. In subsequent

trials with unexpected weight shifts, subjects appeared to scan areas of interest from both

contexts even after learning present orientation.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis advisor) / Buneo, Christopher (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2017
137762-Thumbnail Image.png
Description
This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to

This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to teach seventh graders how to write persuasively. The definitions of student centered and teacher centered management styles used in this paper are drawn from Garret (2008) which suggests that teachers are not entirely one management style or the other, but a mix of the two. This paper closely examines three teachers, two with teacher centered styles and one with a student centered style in order to see which style was most effective in promoting the learning of persuasive writing skills. The findings tentatively indicate that teacher centered management styles yield larger gains in learning compared to more student centered styles.
ContributorsAyala, Joel Nicholas (Author) / Hayes, Elisabeth (Thesis director) / Siyahhan, Sinem (Committee member) / Holmes, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of auditory attention to achieve this same goal with noninvasive electroencephalographic (EEG) methods. Five human participants participated in an auditory attention task. Participants listened to a series of four syllables followed by a fifth syllable (probe syllable). Participants were instructed to indicate whether or not the probe syllable was one of the four syllables played immediately before the probe syllable. Trials of this task were separated into conditions of playing the syllables in silence (Signal) and in background noise (Signal With Noise), and both behavioral and EEG data were recorded. EEG signals were analyzed with event-related potential and time-frequency analysis methods. The behavioral data indicated that participants performed better on the task during the “Signal” condition, which aligns with the challenges demonstrated in the cocktail party effect. The EEG analysis showed that the alpha band’s (9-13 Hz) inter-trial coherence could potentially indicate characteristics of the attended speech signal. These preliminary results suggest that EEG time-frequency analysis has the potential to reveal the neural signatures of auditory attention, which may allow for the design of a noninvasive, EEG-based hearing aid.

ContributorsLaBine, Alyssa (Author) / Daliri, Ayoub (Thesis director) / Chao, Saraching (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

With millions of people living with a disease as restraining as migraines, there are no ways to diagnose them before they occur. In this study, a migraine model using nitroglycerin is used in rats to study the awake brain activity during the migraine state. In an attempt to search for

With millions of people living with a disease as restraining as migraines, there are no ways to diagnose them before they occur. In this study, a migraine model using nitroglycerin is used in rats to study the awake brain activity during the migraine state. In an attempt to search for a biomarker for the migraine state, we found multiple deviations in EEG brain activity across different bands. Firstly, there was a clear decrease in power in the delta, beta, alpha, and theta bands. A slight increase in power in the gamma and high frequency bands was also found, which is consistent with other pain-related studies12. Additionally, we searched for a decreased pain threshold in this deviation, in which we concluded that more data analysis is needed to eliminate the multiple potential noise influxes throughout each dataset. However, with this study we did find a clear change in brain activity, but a more detailed analysis will narrow down what this change could mean and how it impacts the migraine state.

ContributorsStrambi, McKenna (Author) / Muthuswamy, Jitendran (Thesis director) / Greger, Bradley (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05